Advertisement

Gastric Cancer Prewarning Database and Bioinformatics Analysis

  • Cheng Shangli
  • Daxiang Cui
Chapter
Part of the Translational Medicine Research book series (TRAMERE)

Abstract

To establish and extend gastric cancer prewarning database is one basic step to study initiation and progression of gastric cancer. This chapter summarizes databases including genes and proteins associated with gastric cancer, imaging databases, and pathology databases, as well as genotyping databases that are under construction and will be online in the near future.

Keywords

Gastric cancer Prewarning database Gene and protein database Gene expression profiling 

Supplementary material

325083_1_En_15_MOESM1_ESM.docx (138 kb)
Supplementary Tables (DOCX 138 kb)

References

  1. 1.
    Ponniah P. Chapter 1: the database approach. In: Database design and development: an essential guide for IT professionals, Vol. 1; 2005: p. 1–35.Google Scholar
  2. 2.
    Hogeweg P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol. 2011;7(3):e1002021.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61(1):124–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Abbott A. Bioinformatics institute plans public database for gene expression data. Nature. 1999;398(6729):646.CrossRefPubMedGoogle Scholar
  5. 5.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41(Database issue):D36–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2015;43(Database issue):D30–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(W1):W580–4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kulikova T, Aldebert P, Althorpe N, Baker W, Bates K, Browne P, van den Broek A, Cochrane G, Duggan K, Eberhardt R, Faruque N, Garcia-Pastor M, Harte N, Kanz C, Leinonen R, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Stoehr P, Stoesser G, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R. The EMBL nucleotide sequence database. Nucleic Acids Res. 2004;32(Database issue):D27–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol. 2007;406:89–112.PubMedGoogle Scholar
  10. 10.
    Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31(1):365–70.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bhat TN, Bourne P, Feng Z, Gilliland G, Jain S, Ravichandran V, Schneider B, Schneider K, Thanki N, Weissig H, Westbrook J, Berman HM. The PDB data uniformity project. Nucleic Acids Res. 2001;29(1):214–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 2001;29(1):221–2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, Vriend G. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43(Database issue):D364–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Jenuth JP. The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol. 2000;132:301–12.PubMedGoogle Scholar
  15. 15.
    Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Clark K, DiCuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski VE, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu ZY, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O’Sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rubinstein W, Sayers EW, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Trawick BW, Vakatov D, Wang YL, Ward M, Wilbur WJ, Yaschenko E, Zbicz K, Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015;43(D1):D6–17.Google Scholar
  17. 17.
    Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu ZY, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang YL, Wilbur WJ, Yaschenko E, Ye J. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2012;40(D1):D13–25.Google Scholar
  18. 18.
    Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2000;28(1):10–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goujon M, McWilliam H, Li WZ, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010;38:W695–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wilhite SE, Barrett T. Strategies to explore functional genomics data sets in NCBI’s GEO database. Methods Mol Biol. 2012;802:41–53.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang NG, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2013;41(D1):D991–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  23. 23.
    Network TC. Corrigendum: comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013;494(7438):506.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat Methods. 2014;11(6):599–600.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human Gene Mutation Database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Curr Protoc Bioinformatics. 2012;Chapter 1:Unit1 13.Google Scholar
  27. 27.
    Cooper DN, Stenson PD, Chuzhanova NA. The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms. Curr Protoc Bioinformatics. 2006;Chapter 1:Unit 1 13.Google Scholar
  28. 28.
    Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet. 2004;36(5):431–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng J, Zeng X, Ren G, Liu Z. CGAP: a new comprehensive platform for the comparative analysis of chloroplast genomes. BMC Bioinformatics. 2013;14:95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen Y, Hong J, Cui W, Zaneveld J, Wang W, Gibbs R, Xiao Y, Chen R. CGAP-align: a high performance DNA short read alignment tool. PLoS One. 2013;8(4):e61033.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    He X, Chang S, Zhang J, Zhao Q, Xiang H, Kusonmano K, Yang L, Sun ZS, Yang H, Wang J. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res. 2008;36(Database issue):D836–41.PubMedGoogle Scholar
  32. 32.
    Werner S, Chen H, Tao S, Brenner H. Systematic review: serum autoantibodies in the early detection of gastric cancer. Int J Cancer. 2015;136(10):2243–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, Henning E, Blackburn H, Loos RJ, Wareham NJ, O'Rahilly S, Hurles ME, Barroso I, Farooqi IS. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet. 2013;45(5):513–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2015;35(12):1475–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Miller BL. mRNA regulation: a patch for a splice. Nat Chem Biol. 2015;11(7):454–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tabata N, Sakuma Y, Honda Y, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acids Res. 2009;37(8):e64.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tomlinson AJ, Hincapie M, Morris GE, Chicz RM. Global proteome analysis of a human gastric carcinoma. Electrophoresis. 2002;23(18):3233–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics. 2012;75(11):3081–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu W, Liu B, Xin L, Zhang Y, Chen X, Zhu Z, Lin Y. Down-regulated expression of complement factor I: a potential suppressive protein for gastric cancer identified by serum proteome analysis. Clin Chim Acta. 2007;377(1–2):119–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Chong PK, Lee H, Loh MC, Choong LY, Lin Q, So JB, Lim KH, Soo RA, Yong WP, Chan SP, Smoot DT, Ashktorab H, Yeoh KG, Lim YP. Upregulation of plasma C9 protein in gastric cancer patients. Proteomics. 2010;10(18):3210–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ebert MP, Meuer J, Wiemer JC, Schulz HU, Reymond MA, Traugott U, Malfertheiner P, Rocken C. Identification of gastric cancer patients by serum protein profiling. J Proteome Res. 2004;3(6):1261–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Cohen M, Yossef R, Erez T, Kugel A, Welt M, Karpasas MM, Bones J, Rudd PM, Taieb J, Boissin H, Harats D, Noy K, Tekoah Y, Lichtenstein RG, Rubin E, Porgador A. Serum apolipoproteins C-I and C-III are reduced in stomach cancer patients: results from MALDI-based peptidome and immuno-based clinical assays. PLoS One. 2011;6(1):e14540.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ebert MP, Lamer S, Meuer J, Malfertheiner P, Reymond M, Buschmann T, Rocken C, Seibert V. Identification of the thrombin light chain a as the single best mass for differentiation of gastric cancer patients from individuals with dyspepsia by proteome analysis. J Proteome Res. 2005;4(2):586–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Kon OL, Yip TT, Ho MF, Chan WH, Wong WK, Tan SY, Ng WH, Kam SY, Eng A, Ho P, Viner R, Ong HS, Kumarasinghe MP. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile. BMC Med Genomics. 2008;1:54.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kam SY, Hennessy T, Chua SC, Gan CS, Philp R, Hon KK, Lai L, Chan WH, Ong HS, Wong WK, Lim KH, Ling KL, Tan HS, Tan MM, Ho M, Kon OL. Characterization of the human gastric fluid proteome reveals distinct pH-dependent protein profiles: implications for biomarker studies. J Proteome Res. 2011;10(10):4535–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen J, Kahne T, Rocken C, Gotze T, Yu J, Sung JJ, Chen M, Hu P, Malfertheiner P, Ebert MP. Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res. 2004;3(5):1009–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Kikuta K, Kubota D, Saito T, Orita H, Yoshida A, Tsuda H, Suehara Y, Katai H, Shimada Y, Toyama Y, Sato K, Yao T, Kaneko K, Beppu Y, Murakami Y, Kawai A, Kondo T. Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics. 2012;75(4):1089–98.CrossRefPubMedGoogle Scholar
  49. 49.
    Balluff B, Elsner M, Kowarsch A, Rauser S, Meding S, Schuhmacher C, Feith M, Herrmann K, Rocken C, Schmid RM, Hofler H, Walch A, Ebert MP. Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J Proteome Res. 2010;9(12):6317–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Mohri Y, Mohri T, Wei W, Qi YJ, Martin A, Miki C, Kusunoki M, Ward DG, Johnson PJ. Identification of macrophage migration inhibitory factor and human neutrophil peptides 1–3 as potential biomarkers for gastric cancer. Br J Cancer. 2009;101(2):295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jayavelu ND, Bar NS. Metabolomic studies of human gastric cancer: review. World J Gastroenterol. 2014;20(25):8092–101.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Song H, Peng JS, Yao DS, Yang ZL, Liu HL, Zeng YK, Shi XP, Lu BY. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz J Med Biol Res. 2012;45(1):78–85.CrossRefPubMedGoogle Scholar
  53. 53.
    Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, Yoshida M. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 2012;26(5):548–58.CrossRefPubMedGoogle Scholar
  54. 54.
    Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011;6(9):e24143.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000;16(3):202–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Chan AW, Gill RS, Schiller D, Sawyer MB. Potential role of metabolomics in diagnosis and surveillance of gastric cancer. World J Gastroenterol. 2014;20(36):12874–82.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu JZ, Chen JL. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol. 2011;17(6):727–34.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liang Q, Wang C, Li B. Metabolomic analysis using liquid chromatography/mass spectrometry for gastric cancer. Appl Biochem Biotechnol. 2015;176(8):2170–84.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS, Ryu DH, Kim YJ, Hwang GS, Lee BM. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J Toxicol Environ Health A. 2010;73(21–22):1420–30.CrossRefPubMedGoogle Scholar
  61. 61.
    Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69(11):4918–25.CrossRefPubMedGoogle Scholar
  62. 62.
    Cai Z, Zhao JS, Li JJ, Peng DN, Wang XY, Chen TL, Qiu YP, Chen PP, Li WJ, Xu LY, Li EM, Tam JPM, Qi RZ, Jia W, Xie D. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteomics. 2010;9(12):2617–28.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Aa JY, Yu LZ, Sun M, Liu LS, Li MJ, Cao B, Shi J, Xu J, Cheng LP, Zhou J, Zheng T, Wang XW, Zhao CY, Gu RR, Zhang FY, Shi RH, Wang GJ. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. Metabolomics. 2012;8(1):164–73.CrossRefGoogle Scholar
  64. 64.
    Wu H, Xue RY, Tang ZQ, Deng CH, Liu TT, Zeng HZ, Sun YH, Shen XZ. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 2010;396(4):1385–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai 2017

Authors and Affiliations

  1. 1.Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations