Advertisement

Upconversion Nanoparticles for Gastric Cancer Targeted Imaging and Therapy

  • Yuming Yang
  • Daxiang Cui
Chapter
Part of the Translational Medicine Research book series (TRAMERE)

Abstract

Upconversion nanoparticles own unique advantages and exhibit great potential in cancer molecular imaging field. This chapter summarizes available synthesis methods of upconversion nanoparticles and upconversion nanoparticles-based multifunctional nanoprobes for targeted multimode imaging and therapy of gastric cancer, and then biosafety evaluation of prepared upconversion nanoprobes, exploring potential clinical applications.

Keywords

Gastric cancer Upconversion nanoparticles Targeted imaging Therapy Biosafety evaluation 

References

  1. 1.
    Kumar KU, et al. Multicolor upconversion emission and color tunability in Tm3+/Er3+/Yb3+ Tr-doped NaNbO3 nanocrystals. Mater Express. 2012;2(4):294–302.CrossRefGoogle Scholar
  2. 2.
    Guo H, et al. Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B. 2004;108(50):19205–9.CrossRefGoogle Scholar
  3. 3.
    Deren PJ, et al. Up-conversion in elpasolite crystals doped with U3+. Chem Phys Lett. 2000;332(3):308–12.CrossRefGoogle Scholar
  4. 4.
    Stump NA, et al. Stokes and anti-Stokes luminescence from the trihalides of Cm-248. Radiochim Acta. 1993;61(3–4):129–36.Google Scholar
  5. 5.
    Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev. 2003;104(1):139–74.CrossRefGoogle Scholar
  6. 6.
    Yang D, et al. Hollow structured upconversion luminescent NaYF(4):Yb(3)(+), Er(3)(+) nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials. 2013;34(5):1601–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Cao TY, et al. Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg Chem Commun. 2010;13(3):392–4.CrossRefGoogle Scholar
  8. 8.
    Wei Y, et al. Polyol-mediated synthesis of water-soluble LaF3: Yb, Er upconversion fluorescent nanocrystals. Mater Lett. 2007;61(6):1337–40.CrossRefGoogle Scholar
  9. 9.
    Yi G-S, Chow G-M. Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem. 2005;15(41):4460–4.CrossRefGoogle Scholar
  10. 10.
    Babu S, et al. Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chem Commun. 2010;46(37):6915–7.CrossRefGoogle Scholar
  11. 11.
    Cho JH, et al. Up conversion luminescence of Yb3 + −Er3+ codoped CeO2 nanocrystals with imaging applications. J Lumin. 2012;132(3):743–9.CrossRefGoogle Scholar
  12. 12.
    Yang DM, et al. Synthesis of Li1-xNaxYF4:Yb3+/Ln(3+) (0 < = x < = 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging. J Mater Chem. 2012;22(38):20618–25.CrossRefGoogle Scholar
  13. 13.
    Patra A, et al. Upconversion in Er3+:ZrO2 nanocrystals. J Phys Chem B. 2002;106(8):1909–12.CrossRefGoogle Scholar
  14. 14.
    Guo H, et al. Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology. 2010;21(12):125602.PubMedCrossRefGoogle Scholar
  15. 15.
    Sarakovskis A, et al. Up-conversion processes in NaLaF4:Er3+. Opt Mater. 2009;31(10):1517–24.CrossRefGoogle Scholar
  16. 16.
    Patra A, et al. Fluorescence upconversion properties of Er3 + −doped TiO2 and BaTiO3 nanocrystallites. Chem Mater. 2003;15(19):3650–5.CrossRefGoogle Scholar
  17. 17.
    Wang X, et al. Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals. J Phys Chem B. 2004;108(48):18408–13.CrossRefGoogle Scholar
  18. 18.
    Venkatramu V, et al. Synthesis and luminescence properties of Er3 + −doped Lu3Ga5O12 nanocrystals. J Lumin. 2008;128(5–6):811–3.CrossRefGoogle Scholar
  19. 19.
    Venkatramu V, et al. Synthesis, structure and luminescence of Er3 + −doped Y3Ga5O12 nano-garnets. J Mater Chem. 2012;22(27):13788–99.CrossRefGoogle Scholar
  20. 20.
    Rai M, et al. Infrared to visible upconversion in Ho(3)+/Yb(3) + co-doped Y(2) O(3) phosphor: effect of laser input power and external temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2012;97:825–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Li DY, et al. White upconversion emission in Yb3+/Tm3+/Ho3+ doped SrMoO4 nanocrystals by high excited state energy transfer. J Alloys Compd. 2013;550:509–13.CrossRefGoogle Scholar
  22. 22.
    Wei Y, et al. Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors. J Alloys Compd. 2008;455(1–2):376–84.CrossRefGoogle Scholar
  23. 23.
    Zhang F, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew Chem Int Ed. 2007;46(42):7976–9.CrossRefGoogle Scholar
  24. 24.
    Jin J, et al. Polymer-coated NaYF(4):Yb(3)(+), Er(3)(+) upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano. 2011;5(10):7838–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao JW, et al. A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence. Eur J Inorg Chem. 2010;12:1813–9.CrossRefGoogle Scholar
  26. 26.
    Liang YJ, et al. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+, Er3+ nanoparticles. J Alloys Compd. 2013;552:289–93.CrossRefGoogle Scholar
  27. 27.
    Heer S, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater. 2004;16(23–24):2102–5.CrossRefGoogle Scholar
  28. 28.
    Heer S, et al. Blue, green, and Red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed. 2003;42(27):3179–82.CrossRefGoogle Scholar
  29. 29.
    Yi G, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004;4(11):2191–6.CrossRefGoogle Scholar
  30. 30.
    Zhang Y-W, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc. 2005;127(10):3260–1.PubMedCrossRefGoogle Scholar
  31. 31.
    Yin A, et al. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale. 2010;2(6):953–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Mai H-X, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Mai H-X, et al. Highly efficient multicolor Up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C. 2007;111(37):13721–9.CrossRefGoogle Scholar
  34. 34.
    Liu Q, et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc. 2011;133(43):17122–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Boyer J-C, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc. 2006;128(23):7444–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Boyer J-C, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007;7(3):847–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Naccache R, et al. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater. 2009;21(4):717–23.CrossRefGoogle Scholar
  38. 38.
    Vetrone F, Mahalingam V, Capobianco JA. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals. Chem Mater. 2009;21(9):1847–51.CrossRefGoogle Scholar
  39. 39.
    Vetrone F, et al. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater. 2009;19(18):2924–9.CrossRefGoogle Scholar
  40. 40.
    Huang WJ, et al. Uniform NaYF4N:Yb, Tm hexagonal submicroplates: controlled synthesis and enhanced UV and blue upconversion luminescence. Mater Res Bull. 2013;48(2):300–4.CrossRefGoogle Scholar
  41. 41.
    Huang WJ, et al. Controlled synthesis and upconversion luminescence properties of Yb3 + −Tm3+ codoped NaYF4 hexagonal submicroplates. In: Kao JCM, Hou M, Chen R, editors. Frontier of nanoscience and technology II. Stafa-Zurich: Trans Tech Publications Ltd; 2012. p. 117–20.Google Scholar
  42. 42.
    Liu Q, et al. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials. 2011;32(32):8243–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Pires AM, et al. Low-temperature upconversion spectroscopy of nanosized Y2O3: Er, Yb phosphor. J Appl Phys. 2005;98(6):063529. -063529-7.CrossRefGoogle Scholar
  44. 44.
    He M, et al. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals Via an OA/ionic liquid Two-phase system for in vivo dual-modality imaging. Adv Funct Mater. 2011;21(23):4470–7.CrossRefGoogle Scholar
  45. 45.
    Wang J, et al. One-step synthesis of highly water-soluble LaF 3:Ln 3+ nanocrystals in methanol without using any ligands. Nanotechnology. 2007;18(46):465606.PubMedCrossRefGoogle Scholar
  46. 46.
    Hu D, et al. A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4:Yb, Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J Mater Chem. 2011;21(30):11276–82.CrossRefGoogle Scholar
  47. 47.
    Lu H, et al. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem. 2004;14(8):1336–41.CrossRefGoogle Scholar
  48. 48.
    Zeng JH, et al. Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology. 2006;17(14):3549–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Zeng JH, et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv Mater. 2005;17(17):2119–23.CrossRefGoogle Scholar
  50. 50.
    Ghosh P, et al. Influence of surface coating on the upconversion emission properties of LaPO[sub 4]:Yb/Tm core-shell nanorods. J Appl Phys. 2009;105(11):113532–5.CrossRefGoogle Scholar
  51. 51.
    Li C, et al. Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg Chem. 2007;46(16):6329–37.PubMedCrossRefGoogle Scholar
  52. 52.
    Ma D-K, et al. Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: controlled synthesis and luminescent properties. J Phys Chem C. 2009;113(19):8136–42.CrossRefGoogle Scholar
  53. 53.
    Wang Z-L, Hao JH, Chan HLW. Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4: Yb3+, Er3+ submicron disks assembled from primary nanocrystals. J Mater Chem. 2010;20(16):3178–85.CrossRefGoogle Scholar
  54. 54.
    Zhao J, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level. J Phys Chem B. 2008;112(49):15666–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Yang D, et al. One-step synthesis of small-sized and water-soluble NaREF(4) upconversion nanoparticles for in vitro cell imaging and drug delivery. Chemistry. 2013;19(8):2685–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Sikora B, et al. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells. Nanotechnology. 2013;24(23):235702.PubMedCrossRefGoogle Scholar
  57. 57.
    Yang J, et al. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Chemistry. 2012;18(43):13642–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Z-L, et al. Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging. Nanoscale. 2011;3(5):2175–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Gao Y, Cao TY, Li FY. Water-soluble upconversion nanophosphors with cooperative ligands for in vivo lymph node imaging. Chin J Inorg Chem. 2012;28(10):2043–8.Google Scholar
  60. 60.
    Wang M, et al. One-step synthesis and characterization of water-soluble NaYF4:Yb, Er/Polymer nanoparticles with efficient up-conversion fluorescence. J Alloys Compd. 2009;485(1–2):L24–7.CrossRefGoogle Scholar
  61. 61.
    Wang Z, et al. One-pot synthesis of water-soluble and carboxyl-functionalized beta-NaYF4:Yb, Er(Tm) upconversion nanocrystals and their application for bioimaging. J Mater Chem. 2012;22(24):12186–92.CrossRefGoogle Scholar
  62. 62.
    Cao T, et al. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials. 2011;32(11):2959–68.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen C, et al. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 2010;26(11):8797–803.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu X, et al. Ionothermal synthesis of hexagonal-phase NaYF(4):Yb(3+),Er(3+)/Tm(3+) upconversion nanophosphors. Chem Commun (Camb). 2009;43:6628–30.CrossRefGoogle Scholar
  65. 65.
    He M, et al. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system. Chem-a Eur J. 2012;18(19):5954–69.CrossRefGoogle Scholar
  66. 66.
    Zhou N, et al. Shape-controllable synthesis of hydrophilic NaLuF4:Yb, Er nanocrystals by a surfactant-assistant two-phase system. Nanoscale Res Lett. 2013;8:518.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Qiu PY, et al. Tuning lanthanide ion-doped upconversion nanocrystals with different shapes via a one-pot cationic surfactant-assisted hydrothermal strategy. CrystEngComm. 2014;16(10):1859–63.CrossRefGoogle Scholar
  68. 68.
    Chen Z, et al. Versatile synthesis strategy for carboxylic acid − functionalized upconverting nanophosphors as biological labels. J Am Chem Soc. 2008;130(10):3023–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Hu H, et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem Mater. 2008;20(22):7003–9.CrossRefGoogle Scholar
  70. 70.
    Chen K, et al. Fabrication of core/shell structured NaYF4:Yb3+, Er3+/polyphosphazene upconversion nanophosphors functionalized with abundant active amino groups. Mater Lett. 2013;101(15):54–6.CrossRefGoogle Scholar
  71. 71.
    Gao X, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Jingning Shan JC, Meng J, Collins J, Soboyejo W. Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J Appl Phys. 2008;104:094308.CrossRefGoogle Scholar
  73. 73.
    Luccardini C, et al. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 2006;22(5):2304–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277(5330):1232–7.CrossRefGoogle Scholar
  75. 75.
    Hong X, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater. 2004;16(21):4022–7.CrossRefGoogle Scholar
  76. 76.
    Wang D, Rogach AL, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett. 2002;2(8):857–61.CrossRefGoogle Scholar
  77. 77.
    Wang L, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed. 2005;44(37):6054–7.CrossRefGoogle Scholar
  78. 78.
    Zhang P, et al. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc. 2006;128(38):12410–1.PubMedCrossRefGoogle Scholar
  79. 79.
    Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials. 2008;29(30):4122–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Das GK, Tan TTY. Rare-earth-doped and codoped Y 2O 3 nanomaterials as potential bioimaging probes. J Phys Chem C. 2008;112(30):11211–7.CrossRefGoogle Scholar
  81. 81.
    Mader HS, et al. Surface-modified upconverting microparticles and nanoparticles for use in click chemistries. Chemistry. 2010;16(18):5416–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Sivakumar S, Diamente PR, van Veggel FCJM. Silica-coated Ln3 + −doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chemistry (A European Journal). 2006;12(22):5878–84.CrossRefGoogle Scholar
  83. 83.
    Qiu PY, et al. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. Nanoscale. 2013;5(23):11512–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Sisi C, Haiyan C, Yueqing G. Comparison of two strategies for the synthesis of upconverting nanoparticles as biological labels. J Phys Conf Ser. 2011;277(1):012006.Google Scholar
  85. 85.
    Zhang QB, et al. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J Colloid Interface Sci. 2009;336(1):171–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Chen Q, et al. Functionalization of upconverted luminescent NaYF4: Yb/Er nanocrystals by folic acid-chitosan conjugates for targeted lung cancer cell imaging. J Mater Chem. 2011;21(21):7661–7.CrossRefGoogle Scholar
  87. 87.
    Zhan Q, et al. Using 915 nm laser excited Tm(3)+/Er(3)+/Ho(3) + − doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano. 2011;5(5):3744–57.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu S, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci. 2009;106(27):10917–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bogdan N, et al. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J Mater Chem. 2010;20(35):7543–50.CrossRefGoogle Scholar
  90. 90.
    Yi GS, Chow GM. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater. 2006;16(18):2324–9.CrossRefGoogle Scholar
  91. 91.
    Yi G, Peng Y, Gao Z. Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles. Chem Mater. 2011;23(11):2729–34.CrossRefGoogle Scholar
  92. 92.
    Dong B, et al. Multifunctional NaYF4: Yb3+, Er3 + @Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem. 2011;21(17):6193–200.CrossRefGoogle Scholar
  93. 93.
    Li D, et al. Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ nanoparticles. J Phys Chem C. 2010;114(18):8219–26.CrossRefGoogle Scholar
  94. 94.
    Liebherr RB, et al. Maleimide activation of photon upconverting nanoparticles for bioconjugation. Nanotechnology. 2012;23(48):485103.PubMedCrossRefGoogle Scholar
  95. 95.
    Dong A, et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc. 2011;133(4):998–1006.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhou H-P, et al. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv Funct Mater. 2009;19(24):3892–900.CrossRefGoogle Scholar
  97. 97.
    Wang M, et al. Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals. Mater Lett. 2009;63(2):325–7.CrossRefGoogle Scholar
  98. 98.
    Bogdan N, et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011;11(2):835–40.PubMedCrossRefGoogle Scholar
  99. 99.
    Yi G-S, Chow G-M. Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater. 2006;19(3):341–3.CrossRefGoogle Scholar
  100. 100.
    Budijono SJ, et al. Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater. 2009;22(2):311–8.CrossRefGoogle Scholar
  101. 101.
    Shan J, et al. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for Photodynamic Therapy. Adv Funct Mater. 2011;21(13):2488–95.CrossRefGoogle Scholar
  102. 102.
    Cheng L, et al. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010;3(10):722–32.CrossRefGoogle Scholar
  103. 103.
    Wang C, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32(26):6145–54.PubMedCrossRefGoogle Scholar
  104. 104.
    Park YI, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater. 2009;21(44):4467–71.CrossRefGoogle Scholar
  105. 105.
    Kobayashi H, et al. In vivo multiple color lymphatic imaging using upconverting nanocrystals. J Mater Chem. 2009;19(36):6481–4.CrossRefGoogle Scholar
  106. 106.
    Nam SH, et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed. 2011;50(27):6093–7.CrossRefGoogle Scholar
  107. 107.
    Zako T, et al. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Biophys Res Commun. 2009;381(1):54–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Hu H, et al. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chemistry (A European Journal). 2009;15(14):3577–84.CrossRefGoogle Scholar
  109. 109.
    Boyer J-C, et al. Surface modification of upconverting NaYF4 nanoparticles with PEG − phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir. 2009;26(2):1157–64.CrossRefGoogle Scholar
  110. 110.
    Wang M, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano. 2009;3(6):1580–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Deng M, et al. Monodisperse upconversion NaYF4 nanocrystals: syntheses and bioapplications. Nano Res. 2011;4(7):685–94.CrossRefGoogle Scholar
  112. 112.
    Salthouse C, et al. Design and demonstration of a small-animal up-conversion imager. Opt Express. 2008;16(26):21731–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Li LL, et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed Engl. 2012;51(25):6121–5.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Xiong LQ, et al. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials. 2009;30(29):5592–600.PubMedCrossRefGoogle Scholar
  115. 115.
    Idris NM, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials. 2009;30(28):5104–13.PubMedCrossRefGoogle Scholar
  116. 116.
    Pan LY, et al. Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer. Theranostics. 2013;3(3):210–22.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kumar R, et al. Combined optical and MR bioimaging using rare earth Ion doped NaYF4 nanocrystals. Adv Funct Mater. 2009;19(6):853–9.CrossRefGoogle Scholar
  118. 118.
    Chen D, et al. Lanthanide activator doped NaYb1-xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties. J Mater Chem. 2011;21(17):6186–92.CrossRefGoogle Scholar
  119. 119.
    Chen F, et al. A “neck-formation” strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe. Chemistry (A European Journal). 2010;16(37):11254–60.CrossRefGoogle Scholar
  120. 120.
    Chen H, et al. Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small. 2013;10:160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Das GK, et al. Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir. 2010;26(11):8959–65.PubMedCrossRefGoogle Scholar
  122. 122.
    Debasu ML, et al. (Gd, Yb, Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging. Nanoscale. 2012;4(16):5154–62.PubMedCrossRefGoogle Scholar
  123. 123.
    Hou Y, et al. Fe3O4 modified up-conversion luminescent nanocrystals for biological applications. Chin J Chem. 2012;30(12):2774–8.CrossRefGoogle Scholar
  124. 124.
    Li FF, et al. Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 nanocrystals as potential multifunctional bioprobes. Chemistry (A European Journal). 2012;18(37):11641–6.CrossRefGoogle Scholar
  125. 125.
    Liu C, et al. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano. 2013;7:7227–40.PubMedCrossRefGoogle Scholar
  126. 126.
    Lu Q, et al. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties. J Solid State Chem. 2012;192:75–80.CrossRefGoogle Scholar
  127. 127.
    Lopez-Mariscal C, et al. Phase dynamics of continuous topological upconversion in vortex beams. Opt Express. 2008;16(15):11411–22.PubMedCrossRefGoogle Scholar
  128. 128.
    Paik T, et al. Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano. 2013;7(3):2850–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Wang Y, et al. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging. Nanotechnology. 2013;24(17):175101.PubMedCrossRefGoogle Scholar
  130. 130.
    Wilhelm S, et al. Magnetic nanosensor particles in luminescence upconversion capability. Angew Chem Int Ed Engl. 2011;50(37):A59–62.PubMedGoogle Scholar
  131. 131.
    Wong HT, et al. Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem. 2011;21(41):16589–96.CrossRefGoogle Scholar
  132. 132.
    Zeng S, et al. Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er. Nanoscale. 2012;4(16):5118–24.PubMedCrossRefGoogle Scholar
  133. 133.
    Chen H, et al. Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small. 2014;10(1):160–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Huang P, et al. Lanthanide-doped LiLuF(4) upconversion nanoprobes for the detection of disease biomarkers. Angew Chem Int Ed Engl. 2014;53(5):1252–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Tian G, et al. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials. 2015;40:107–16.PubMedCrossRefGoogle Scholar
  136. 136.
    Shen J, et al. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun (Camb). 2010;46(31):5731–3.CrossRefGoogle Scholar
  137. 137.
    Zhang L, et al. Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging. Chem Commun (Camb). 2012;48(91):11238–40.CrossRefGoogle Scholar
  138. 138.
    Xu H, et al. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials. 2011;32(35):9364–73.PubMedCrossRefGoogle Scholar
  139. 139.
    Liu Z, et al. Long-circulating Er3 + −doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials. 2012;33(28):6748–57.PubMedCrossRefGoogle Scholar
  140. 140.
    Ma J, et al. Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem B. 2012;116(48):14062–70.PubMedCrossRefGoogle Scholar
  141. 141.
    Xing H, et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials. 2012;33(4):1079–89.PubMedCrossRefGoogle Scholar
  142. 142.
    Zeng S, et al. PEG modified BaGdF(5):Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials. 2012;33(36):9232–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Xiao Q, et al. Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging. Biomaterials. 2012;33(30):7530–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Xing HY, et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials. 2012;33(21):5384–93.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang G, et al. Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties. Nanoscale. 2011;3(10):4365–71.PubMedCrossRefGoogle Scholar
  146. 146.
    Gao G, et al. One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging. Nanoscale. 2013;5(1):351–62.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhou J, et al. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials. 2012;33(26):6201–10.PubMedCrossRefGoogle Scholar
  148. 148.
    Liu FY, et al. Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging. Biomaterials. 2013;34(21):5218–25.PubMedCrossRefGoogle Scholar
  149. 149.
    Xia A, et al. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials. 2012;33(21):5394–405.PubMedCrossRefGoogle Scholar
  150. 150.
    Liu F, et al. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv Healthc Mater. 2015;4(4):559–68.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhu X, et al. Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials. 2012;33(18):4618–27.PubMedCrossRefGoogle Scholar
  152. 152.
    Liu Z, et al. Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials. 2013;34(6):1712–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Zhou J, et al. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148–56.PubMedCrossRefGoogle Scholar
  154. 154.
    Sun Y, et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials. 2011;32(11):2999–3007.PubMedCrossRefGoogle Scholar
  155. 155.
    Liu Q, et al. 18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. ACS Nano. 2011;5(4):3146–57.PubMedCrossRefGoogle Scholar
  156. 156.
    Wang C, et al. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials. 2012;33(19):4872–81.PubMedCrossRefGoogle Scholar
  157. 157.
    Deng R, et al. Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–71.PubMedCrossRefGoogle Scholar
  158. 158.
    Liu J, et al. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J Am Chem Soc. 2014;136(27):9701–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Chen Z, et al. Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Biomaterials. 2015;39:15–22.PubMedCrossRefGoogle Scholar
  160. 160.
    Chao Wang LC, Zhuang L. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32(4):1110–20.PubMedCrossRefGoogle Scholar
  161. 161.
    Liu JN, et al. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials. 2012;33(29):7282–90.PubMedCrossRefGoogle Scholar
  162. 162.
    Tian G, et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater. 2012;24(9):1226–31.PubMedCrossRefGoogle Scholar
  163. 163.
    Guo H, et al. Upconversion nanoparticles modified with aminosilanes as carriers of DNA vaccine for foot-and-mouth disease. Appl Microbiol Biotechnol. 2012;95(5):1253–63.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhang F, et al. Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 2012;12(1):61–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Xu Z, et al. Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3: Er3 + @nSiO2@mSiO2 nanocomposite as a drug carrier. Nanoscale. 2011;3(2):661–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Li C, et al. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small. 2013;9:4150–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Hou Z, et al. Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3 + @silica fiber nanocomposite. Adv Funct Mater. 2011;21(12):2356–65.CrossRefGoogle Scholar
  168. 168.
    Hou Z, et al. Electrospun upconversion composite fibers as dual drugs delivery system with individual release properties. Langmuir. 2013;29(30):9473–82.PubMedCrossRefGoogle Scholar
  169. 169.
    Kang X, et al. Core–shell structured up-conversion luminescent and mesoporous NaYF4:Yb3+/Er3 + @nSiO2@mSiO2 nanospheres as carriers for drug delivery. J Phys Chem C. 2011;115(32):15801–11.CrossRefGoogle Scholar
  170. 170.
    Wang M, et al. Synthesis and characterization of NaYF4: Yb, Er upconversion fluorescent nanoparticles via a co-precipitation method. Guang Pu Xue Yu Guang Pu Fen Xi. 2009;29(12):3327–31.PubMedGoogle Scholar
  171. 171.
    Gai S, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv Funct Mater. 2010;20(7):1166–72.CrossRefGoogle Scholar
  172. 172.
    Qiu PY, et al. An anion-induced hydrothermal oriented-explosive strategy for the synthesis of porous upconversion nanocrystals. Theranostics. 2015;5(5):456–68.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Shan J, et al. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology. 2009;20(15):155101.CrossRefGoogle Scholar
  174. 174.
    Yang Y, et al. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale. 2013;5(1):231–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Koo YE, et al. Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy. Appl Opt. 2007;46(10):1924–30.PubMedCrossRefGoogle Scholar
  176. 176.
    Lee YE, Kopelman R. Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol. 2011;726:151–78.PubMedCrossRefGoogle Scholar
  177. 177.
    Reddy GR, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 2006;12(22):6677–86.PubMedCrossRefGoogle Scholar
  178. 178.
    Gupta A, et al. Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles. Nanomedicine. 2012;8(6):941–50.PubMedCrossRefGoogle Scholar
  179. 179.
    Wang S, et al. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Lasers Surg Med. 2011;43(7):686–95.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Zhang P, et al. Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc. 2007;129(15):4526–7.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Carling C-J, et al. Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew Chem Int Ed. 2010;49(22):3782–5.CrossRefGoogle Scholar
  182. 182.
    Chen F, et al. A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry. 2012;18(23):7082–90.PubMedCrossRefGoogle Scholar
  183. 183.
    Wang FF, et al. Multifunctional up-converting nanocomposites with multimodal imaging and photosensitization at near-infrared excitation. J Mater Chem. 2012;22(47):24597–604.CrossRefGoogle Scholar
  184. 184.
    Zhao ZX, et al. Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J. 2012;7(4):830–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Tian G, et al. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small. 2013;9(11):1929–38.PubMedCrossRefGoogle Scholar
  186. 186.
    Park YI, et al. Luminescence/magnetic resonance imaging and photodynamic therapy based on upconverting nanoparticles. In: Choi SH et al., editors. Nanosystems in engineering and medicine. Bellingham: SPIE-Int Soc Optical Engineering; 2012.Google Scholar
  187. 187.
    Lim ME, et al. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials. 2012;33(6):1912–20.PubMedCrossRefGoogle Scholar
  188. 188.
    Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29(7):937–43.PubMedCrossRefGoogle Scholar
  189. 189.
    Chatterjee DK, Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine. 2008;3(1):73–82.PubMedCrossRefGoogle Scholar
  190. 190.
    Guo H, et al. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine. 2010;6(3):486–95.PubMedCrossRefGoogle Scholar
  191. 191.
    Qian HS, et al. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small. 2009;5(20):2285–90.PubMedCrossRefGoogle Scholar
  192. 192.
    Idris NM, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18(10):1580–5.PubMedCrossRefGoogle Scholar
  193. 193.
    Ungun B, et al. Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express. 2009;17(1):80–6.PubMedCrossRefGoogle Scholar
  194. 194.
    Wang C, et al. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv Funct Mater. 2013;23(24):3077–86.CrossRefGoogle Scholar
  195. 195.
    Zhou A, et al. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharm. 2012;9(6):1580–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Cui S, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 2013;7(1):676–88.PubMedCrossRefGoogle Scholar
  197. 197.
    Hah HJ, et al. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci. 2011;11(1):90–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Qin M, et al. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem Photobiol Sci. 2011;10(5):832–41.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Tang W, et al. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol. 2005;81(2):242–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Tang W, et al. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun. 2008;369(2):579–83.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Yan B, et al. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc. 2012;134(40):16558–61.PubMedCrossRefGoogle Scholar
  202. 202.
    Huang X, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.PubMedCrossRefGoogle Scholar
  203. 203.
    Cheng L, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl. 2011;50(32):7385–90.PubMedCrossRefGoogle Scholar
  204. 204.
    Cheng L, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 2012;33(7):2215–22.PubMedCrossRefGoogle Scholar
  205. 205.
    Shan GB, Weissleder R, Hilderbrand SA. Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics. 2013;3(4):267–74.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Chen Q, et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials. 2014;35(9):2915–23.PubMedCrossRefGoogle Scholar
  207. 207.
    Fan W, et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials. 2014;35(32):8992–9002.PubMedCrossRefGoogle Scholar
  208. 208.
    Zhou J, et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials. 2010;31(12):3287–95.PubMedCrossRefGoogle Scholar
  209. 209.
    Hilderbrand SA, et al. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun (Camb). 2009;0(28):4188–90.Google Scholar
  210. 210.
    Xiong L, et al. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials. 2010;31(27):7078–85.PubMedCrossRefGoogle Scholar
  211. 211.
    Cheng L, et al. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine (Lond). 2011;6(8):1327–40.CrossRefGoogle Scholar
  212. 212.
    Bae YM, et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials. 2012;33(35):9080–6.PubMedCrossRefGoogle Scholar
  213. 213.
    Zhou JC, et al. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials. 2011;32(34):9059–67.PubMedCrossRefGoogle Scholar
  214. 214.
    Wang K, et al. Toxicity assessments of near-infrared upconversion luminescent LaF3:Yb, Er in early development of zebrafish embryos. Theranostics. 2013;3(4):258–66.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai 2017

Authors and Affiliations

  1. 1.Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations