Advertisement

Multifunctional Nanoprobes for Theranostics of Gastric Cancer

  • Daxiang Cui
Chapter
Part of the Translational Medicine Research book series (TRAMERE)

Abstract

Gastric cancer therapeutic strategies still focus on early diagnosis and operation therapy, enhanced immunotherapy, and killing gastric cancer stem cells to overcome multidrug resistance (MDR). This chapter summarizes that our team designed and prepared series of multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, including series of fluorescent magnetic nanoprobes, series of quantum dots nanoprobes and carbon dots, series of gold nanoprobes, series of upconversion nanoprobes, RNA nanoprobes, and nanoprobes for killing gastric cancer stem cells and enhanced immunotherapeutic efficacy. Up to date, carbon dots based nanoprobes were evaluated to confirm their safety, and were used for identifying the boundary of gastric cancer and tracking metastasis lymph nodes, exhibiting clinical application prospect.

Keywords

Gastric cancer Multimode imaging Nanoprobes Targeted imaging Targeted therapy Diagnosis and simultaneous therapy 

Notes

Acknowledgment

This work was supported by Chinese Key Basic Research Program (973 Project) (No. 2010CB933901 and 2015CB931802), the National Natural Scientific Foundation of China (Grant No. 81225010, 81327002, and 31170961), and 863 project of China (no. 2012AA022703 and 2014AA020700), Shanghai Science and Technology Fund (No. 13NM1401500).

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Takahashi T, Saikawa Y, Kitagawa Y. Gastric cancer: current status of diagnosis and treatment. Cancer (Basel). 2013;5:48–63.CrossRefGoogle Scholar
  4. 4.
    Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005;241:27–39.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Comis RL, Carter SK. A review of chemotherapy in gastric cancer. Cancer. 1974;34:1576–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuo CY, Chao Y, Li CP. Update on treatment of gastric cancer. J Chin Med Assoc. 2014;77:345–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Proserpio I, Rausei S, Barzaghi S, Frattini F, Galli F, Iovino D, et al. Multimodal treatment of gastric cancer. World J Gastrointest Surg. 2014;6:55–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol. 2010;6:527–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Cui DX, Zhang L, Yan XJ, Zhang LX, Xu JR, Guo YH, et al. A microarray-based gastric carcinoma prewarning system. World J Gastroenterol. 2005;11:1273–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang YX, Gao G, Liu HJ, Fu HL, Fan J, Wang K, Chen Y, Li BJ, Zhang CL, Zhi X, He L, Cui DX. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs. Theranostics. 2014;4:154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang K, Ruan J, Qian Q, Song H, Bao CC, Kong YF, Zhang CL, Hu GH, Ni J, Cui DX. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnol. 2011;9:23.CrossRefGoogle Scholar
  13. 13.
    Ruan J, Song H, Qian QR, Li C, Wang K, Bao CC, Cui DX. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33:7093–102.CrossRefPubMedGoogle Scholar
  14. 14.
    He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, Chen F, Wang C, Ma JB, He R, Cui DX. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater. 2011;21:4470–7.CrossRefGoogle Scholar
  15. 15.
    Li ZM, Huang P, Zhang XJ, Lin J, Yang S, Liu B, Gao F, Xi P, Ren QS, Cui DX. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm. 2010;7:94–104.CrossRefPubMedGoogle Scholar
  16. 16.
    Huang P, Lin J, Wang XS, Wang Z, Zhang CL, He M, Wang K, Chen F, Li ZM, Shen GX, Cui DX, Chen XY. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou ZJ, Zhang CL, Qian QR, Ma JB, He M, Pan LY, Gao G, Fu HL, Wang K, Cui DX. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol. 2013;11:17.CrossRefGoogle Scholar
  18. 18.
    Zhang CL, Zhou ZJ, Qian QR, Gao G, Li C, Feng LL, Wang Q, Cui DX. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1:5045–53.CrossRefGoogle Scholar
  19. 19.
    Yang W, Raufi A, Klempner SJ. Targeted therapy for gastric cancer: molecular pathways and ongoing investigations. Biochim Biophys Acta. 2014;1846:232–7.PubMedGoogle Scholar
  20. 20.
    Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release. 2012;161:884–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Pan BF, Cui DX, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu BF, Li Q, He R, Hu GH. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009;20:125101.CrossRefPubMedGoogle Scholar
  22. 22.
    Qi L, Wu L, Zheng S, Wang Y, Fu H, Cui DX. Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA. Biomacromolecules. 2012;13:2723–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA. Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther. 2011;10:972–82.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yu X, Pishko MV. Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules. 2011;12:3205–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou J, Shum KT, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel, Switzerland). 2013;6:85–107.CrossRefGoogle Scholar
  26. 26.
    Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol. 2010;5:833–42.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther. 2012;22:226–45.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Guo P, Zhang C, Chen C, Garver K, Trottier M. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell. 1998;2:149–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Shu D, Moll WD, Deng Z, Mao C, Guo P. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 2004;4:1717–23.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA (New York, NY). 2013;19:767–77.CrossRefGoogle Scholar
  31. 31.
    Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol. 2011;6:658–67.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Abdelmawla S, Guo S, Zhang L, Pulukuri SM, Patankar P, Conley P, et al. Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther. 2011;19:1312–22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, et al. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (New York, NY). 2013;19:1226–37.CrossRefGoogle Scholar
  34. 34.
    Shu Y, Shu D, Haque F, Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc. 2013;8:1635–59.CrossRefPubMedGoogle Scholar
  35. 35.
    Haque F, Shu D, Shu Y, Shlyakhtenko LS, Rychahou PG, Evers BM, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today. 2012;7:245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang F, Braun GB, Pallaoro A, Zhang Y, et al. Mesoporous multifunctional upconversion luminescent and magnetic “Nanorattle” materials for targeted chemotherapy. Nano Letters. 2012;12:61–7.Google Scholar
  37. 37.
    Ma JB, Zhou ZJ, Zhang CL, Gao G, Li C, Cui D. Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem C. 2012;116:14062–70.CrossRefGoogle Scholar
  38. 38.
    Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108:619–26.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Teng L, Xie J, Teng L, Lee RJ. Clinical translation of folate receptor-targeted therapeutics. Expert Opin Drug Deliv. 2012;9:901–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Ly A, Hoyt L, Crowell J, Kim YI. Folate and DNA methylation. Antioxid Redox Signal. 2012;17:302–26.CrossRefPubMedGoogle Scholar
  41. 41.
    Gao W, Xiang B, Meng TT, Liu F, Qi XR. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials. 2013;34:4137–49.CrossRefPubMedGoogle Scholar
  42. 42.
    Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34:251–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Peng H, Bao L, Chunlei Z, Lin J, Luo T, Yang D, He M, Zhiming L, Gao G, Gao B, Shen F, Daxiang C. Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–809.CrossRefGoogle Scholar
  44. 44.
    Li ZM, Huang P, He R, Lin J, Yang S, Zhang XJ, Ren QS, Cui DX. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mat Lett. 2010;64:375–8.CrossRefGoogle Scholar
  45. 45.
    Wang Z, Ruan J, Cui DX. Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett. 2009;4:593–605.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Song H, He R, Wang K, Ruan J, Bao CC, Li N, Ji JJ, Cui DX*. Anti-HIF-1 alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials. 2010;31:2302–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Liang SJ, Li C, Zhao CL, Chen YS, Xu L, Bao CC, Wang XY, Liu G, Zhang FC, Cui DX. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics. 2015;5:879–81.CrossRefGoogle Scholar
  48. 48.
    Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond). 2012;7:597–615.CrossRefGoogle Scholar
  49. 49.
    Zhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol. 2010;6:527–37.CrossRefPubMedGoogle Scholar
  50. 50.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells-perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Gilbertson RJ, Graham TA. Cancer: resolving the stem-cell debate. Nature. 2012;488:462–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker cd44. Stem Cells. 2009;27:1006–20.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu J, Ma L, Xu J, Liu C, Zhang J, Liu J, et al. Spheroid body-forming cells in the human gastric cancer cell line mkn-45 possess cancer stem cell properties. Int J Oncol. 2013;42:453–9.PubMedGoogle Scholar
  54. 54.
    Li R, Wu X, Wei H, Tian S. Characterization of side population cells isolated from the gastric cancer cell line sgc-7901. Oncol Lett. 2013;5:877–83.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, et al. Identification of cancer stem cells in vincristine preconditioned sgc7901 gastric cancer cell line. J Cell Biochem. 2012;113:302–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, et al. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev. 2013;22:2221–39.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M. Cd44 and epcam: cancer-initiating cell markers. Curr Mol Med. 2008;8:784–804.CrossRefPubMedGoogle Scholar
  59. 59.
    Prud’Homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 2012;18:2838–49.CrossRefPubMedGoogle Scholar
  60. 60.
    Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22:248–58.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang C, Li C, He F, Cai Y, Yang H. Identification of cd44+cd24+ gastric cancer stem cells. J Cancer Res Clin Oncol. 2011;137:1679–86.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen W, Zhang X, Chu C, Cheung WL, Ng L, Lam S, et al. Identification of cd44+ cancer stem cells in human gastric cancer. Hepatogastroenterology. 2013;60:949–54.PubMedGoogle Scholar
  63. 63.
    Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, et al. Hyaluronan-cd44 interactions as potential targets for cancer therapy. FEBS J. 2011;278:1429–43.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yoshida M, Yasuda T, Hiramitsu T, Ito H, Nakamura T. Induction of apoptosis by anti-cd44 antibody in human chondrosarcoma cell line sw1353. Biomed Res. 2008;29:47–52.CrossRefPubMedGoogle Scholar
  65. 65.
    Jang BI, Li Y, Graham DY, Cen P. The role of cd44 in the pathogenesis, diagnosis, and therapy of gastric cancer. Gut Liver. 2011;5:397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Heider KH, Kuthan H, Stehle G, Munzert G. Cd44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother. 2004;53:567–79.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen Y, Huang K, Li X, Lin X, Zhu Z, Wu Y. Generation of a stable anti-human cd44v6 scfv analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother. 2010;59:933–42.CrossRefPubMedGoogle Scholar
  68. 68.
    Naor D, Sionov RV, Ish-Shalom D. Cd44: structure, function, and association with the malignant process. Adv Cancer Res. 1997;71:241–319.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang CL, et al. Folic acid/ ce6 conjugated gold nanoclusters for NIR fluorescent imaging and photodynamic therapy with enhanced permission and retention. Adv Funct Mater. 2015;28:1314–25.CrossRefGoogle Scholar
  70. 70.
    Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui DX. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–50.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen F, Huang P, Zhu Y, Wu J, Zhang C, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3t/Gd3t dual-doped hydroxyapatite nanorods. Biomaterials. 2011;32:9031–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Cui D, Jin G, Gao T, Sun T, Tian F, Estrada GG, Gao H. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol. 2004;13:1136–45.Google Scholar
  73. 73.
    Code J, Tian FR, Hemandez Y, Bao CC, Baptisa P, Cui D, Stoeger T, et al. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale. 2015;7:9083–91.CrossRefGoogle Scholar
  74. 74.
    Li C, Yang J, Wang C, Liang S, Zhang C, Chen F, Fu HL, Wang K, Cui D. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymerengineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res Lett. 2014;9:244.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chen L, Zheng J, Zhang Y, Yang L, Wang J, Ni J, Cui D, Yu C, Cai ZL. Tumor-specific expression of MicroRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol Ther. 2011;19:1521–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fu HL, Ma Y, Lu LG, Hou P, Li BJ, Jin WL, Cui DX. TET1 exerts its tumor suppressor function by interacting with p53-EZH2 pathway in gastric cancer. J Biomed Nanotechnol. 2014;10:1217–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Khisamutdinov EF, Jasinski DL, Guo P. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano. 2014;8:4771–81.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cui D, Zhang CL, Liu B, Shu Y, Du T, Li C, Pan F, Yang Y, Ni J, Li H, Brand-Saberi B, Guo PX. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci Rep. 2015;5:10732.CrossRefGoogle Scholar
  79. 79.
    Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.CrossRefPubMedGoogle Scholar
  80. 80.
    Huang P, et al. Light-triggered theranostic based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kim C, Song HM, Cai X, Yao J, Wei A, Wang LV. In vivo photoacoustic mapping of lymphatic systems with Plasmon-resonant nanostars. J Mater Chem. 2011;21:2841–4.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater. 2013;25:3055–61; Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T. Gold nanostars: surfactant-free synthesis, 3d modelling, and two-photon photoluminescence imaging. Nanotechnology. 2012;23:075102.Google Scholar
  83. 83.
    Chen R, Wang X, Yao X, Zheng X, Wang J, Jiang X. Near-ir-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials. 2013;34:8314–22Google Scholar
  84. 84.
    Li C, et al. DC integrated inactive gastric cancer cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials. 2015;35:177–87.CrossRefGoogle Scholar
  85. 85.
    Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM, et al. Targetable gold nanorods for epithelial cancer therapy guided by near-ir absorption imaging. Small. 2012;8:746–53.CrossRefPubMedGoogle Scholar
  86. 86.
    Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine. 2012;8:1355–63.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5:4319–28.CrossRefPubMedGoogle Scholar
  88. 88.
    Park J, Ku M, Kim E, Park Y, Hong Y, Haam S, et al. Cd44-specific supramolecular hydrogels for fluorescence molecular imaging of stem-like gastric cancer cells. Integr Biol. 2013;5:669–72.CrossRefGoogle Scholar
  89. 89.
    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of cd44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.CrossRefPubMedGoogle Scholar
  90. 90.
    Burke AR, Singh RN, Carroll DL, Wood JC, D’Agostino Jr RB, Ajayan PM, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33:2961–70.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lu L, Yan GZ, Zhao K, Xu F. An implantable telemetry platform system with ASIC for in vivo monitoring of gastrointestinal physiological information. IEEE Sens J. 2015;12:3524–34.CrossRefGoogle Scholar
  92. 92.
    Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009;20:125101.CrossRefPubMedGoogle Scholar
  94. 94.
    Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–50.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. Rgd-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm. 2010;7:94–104.CrossRefPubMedGoogle Scholar
  96. 96.
    Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev. 2014;43:7132–70.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Li W, Sun X, Wang Y, Niu G, Chen X, Qian Z, et al. In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs. Biomed Optics Exp. 2014;5:2679–85.CrossRefGoogle Scholar
  98. 98.
    Nie L, Huang P, Li W, Yan X, Jin A, Wang Z, et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy. ACS Nano. 2014;8:12141–50.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Chen YS, Frey W, Aglyamov S, Emelianov S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small. 2012;8:47–52.CrossRefPubMedGoogle Scholar
  100. 100.
    Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8:5696–706.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai 2017

Authors and Affiliations

  1. 1.Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations