Skip to main content

Multifunctional Nanoprobes for Theranostics of Gastric Cancer

  • Chapter
  • First Online:
  • 660 Accesses

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Gastric cancer therapeutic strategies still focus on early diagnosis and operation therapy, enhanced immunotherapy, and killing gastric cancer stem cells to overcome multidrug resistance (MDR). This chapter summarizes that our team designed and prepared series of multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, including series of fluorescent magnetic nanoprobes, series of quantum dots nanoprobes and carbon dots, series of gold nanoprobes, series of upconversion nanoprobes, RNA nanoprobes, and nanoprobes for killing gastric cancer stem cells and enhanced immunotherapeutic efficacy. Up to date, carbon dots based nanoprobes were evaluated to confirm their safety, and were used for identifying the boundary of gastric cancer and tracking metastasis lymph nodes, exhibiting clinical application prospect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Takahashi T, Saikawa Y, Kitagawa Y. Gastric cancer: current status of diagnosis and treatment. Cancer (Basel). 2013;5:48–63.

    Article  Google Scholar 

  4. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005;241:27–39.

    PubMed  PubMed Central  Google Scholar 

  5. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.

    Article  CAS  PubMed  Google Scholar 

  6. Comis RL, Carter SK. A review of chemotherapy in gastric cancer. Cancer. 1974;34:1576–86.

    Article  CAS  PubMed  Google Scholar 

  7. Kuo CY, Chao Y, Li CP. Update on treatment of gastric cancer. J Chin Med Assoc. 2014;77:345–53.

    Article  PubMed  Google Scholar 

  8. Proserpio I, Rausei S, Barzaghi S, Frattini F, Galli F, Iovino D, et al. Multimodal treatment of gastric cancer. World J Gastrointest Surg. 2014;6:55–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol. 2010;6:527–37.

    Article  CAS  PubMed  Google Scholar 

  10. Cui DX, Zhang L, Yan XJ, Zhang LX, Xu JR, Guo YH, et al. A microarray-based gastric carcinoma prewarning system. World J Gastroenterol. 2005;11:1273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang YX, Gao G, Liu HJ, Fu HL, Fan J, Wang K, Chen Y, Li BJ, Zhang CL, Zhi X, He L, Cui DX. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs. Theranostics. 2014;4:154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Ruan J, Qian Q, Song H, Bao CC, Kong YF, Zhang CL, Hu GH, Ni J, Cui DX. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnol. 2011;9:23.

    Article  CAS  Google Scholar 

  13. Ruan J, Song H, Qian QR, Li C, Wang K, Bao CC, Cui DX. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33:7093–102.

    Article  CAS  PubMed  Google Scholar 

  14. He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, Chen F, Wang C, Ma JB, He R, Cui DX. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater. 2011;21:4470–7.

    Article  CAS  Google Scholar 

  15. Li ZM, Huang P, Zhang XJ, Lin J, Yang S, Liu B, Gao F, Xi P, Ren QS, Cui DX. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm. 2010;7:94–104.

    Article  CAS  PubMed  Google Scholar 

  16. Huang P, Lin J, Wang XS, Wang Z, Zhang CL, He M, Wang K, Chen F, Li ZM, Shen GX, Cui DX, Chen XY. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou ZJ, Zhang CL, Qian QR, Ma JB, He M, Pan LY, Gao G, Fu HL, Wang K, Cui DX. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol. 2013;11:17.

    Article  CAS  Google Scholar 

  18. Zhang CL, Zhou ZJ, Qian QR, Gao G, Li C, Feng LL, Wang Q, Cui DX. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1:5045–53.

    Article  CAS  Google Scholar 

  19. Yang W, Raufi A, Klempner SJ. Targeted therapy for gastric cancer: molecular pathways and ongoing investigations. Biochim Biophys Acta. 2014;1846:232–7.

    CAS  PubMed  Google Scholar 

  20. Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release. 2012;161:884–92.

    Article  CAS  PubMed  Google Scholar 

  21. Pan BF, Cui DX, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu BF, Li Q, He R, Hu GH. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009;20:125101.

    Article  PubMed  Google Scholar 

  22. Qi L, Wu L, Zheng S, Wang Y, Fu H, Cui DX. Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA. Biomacromolecules. 2012;13:2723–30.

    Article  CAS  PubMed  Google Scholar 

  23. Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA. Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther. 2011;10:972–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu X, Pishko MV. Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules. 2011;12:3205–12.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J, Shum KT, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel, Switzerland). 2013;6:85–107.

    Article  CAS  Google Scholar 

  26. Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol. 2010;5:833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther. 2012;22:226–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo P, Zhang C, Chen C, Garver K, Trottier M. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell. 1998;2:149–55.

    Article  CAS  PubMed  Google Scholar 

  29. Shu D, Moll WD, Deng Z, Mao C, Guo P. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 2004;4:1717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA (New York, NY). 2013;19:767–77.

    Article  CAS  Google Scholar 

  31. Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol. 2011;6:658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdelmawla S, Guo S, Zhang L, Pulukuri SM, Patankar P, Conley P, et al. Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther. 2011;19:1312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, et al. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (New York, NY). 2013;19:1226–37.

    Article  CAS  Google Scholar 

  34. Shu Y, Shu D, Haque F, Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc. 2013;8:1635–59.

    Article  CAS  PubMed  Google Scholar 

  35. Haque F, Shu D, Shu Y, Shlyakhtenko LS, Rychahou PG, Evers BM, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today. 2012;7:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang F, Braun GB, Pallaoro A, Zhang Y, et al. Mesoporous multifunctional upconversion luminescent and magnetic “Nanorattle” materials for targeted chemotherapy. Nano Letters. 2012;12:61–7.

    Google Scholar 

  37. Ma JB, Zhou ZJ, Zhang CL, Gao G, Li C, Cui D. Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem C. 2012;116:14062–70.

    Article  CAS  Google Scholar 

  38. Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108:619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teng L, Xie J, Teng L, Lee RJ. Clinical translation of folate receptor-targeted therapeutics. Expert Opin Drug Deliv. 2012;9:901–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ly A, Hoyt L, Crowell J, Kim YI. Folate and DNA methylation. Antioxid Redox Signal. 2012;17:302–26.

    Article  CAS  PubMed  Google Scholar 

  41. Gao W, Xiang B, Meng TT, Liu F, Qi XR. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials. 2013;34:4137–49.

    Article  CAS  PubMed  Google Scholar 

  42. Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34:251–61.

    Article  CAS  PubMed  Google Scholar 

  43. Peng H, Bao L, Chunlei Z, Lin J, Luo T, Yang D, He M, Zhiming L, Gao G, Gao B, Shen F, Daxiang C. Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–809.

    Article  Google Scholar 

  44. Li ZM, Huang P, He R, Lin J, Yang S, Zhang XJ, Ren QS, Cui DX. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mat Lett. 2010;64:375–8.

    Article  CAS  Google Scholar 

  45. Wang Z, Ruan J, Cui DX. Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett. 2009;4:593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song H, He R, Wang K, Ruan J, Bao CC, Li N, Ji JJ, Cui DX*. Anti-HIF-1 alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials. 2010;31:2302–12.

    Article  CAS  PubMed  Google Scholar 

  47. Liang SJ, Li C, Zhao CL, Chen YS, Xu L, Bao CC, Wang XY, Liu G, Zhang FC, Cui DX. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics. 2015;5:879–81.

    Article  Google Scholar 

  48. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond). 2012;7:597–615.

    Article  CAS  Google Scholar 

  49. Zhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol. 2010;6:527–37.

    Article  CAS  PubMed  Google Scholar 

  50. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells-perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  51. Gilbertson RJ, Graham TA. Cancer: resolving the stem-cell debate. Nature. 2012;488:462–3.

    Article  CAS  PubMed  Google Scholar 

  52. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker cd44. Stem Cells. 2009;27:1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Ma L, Xu J, Liu C, Zhang J, Liu J, et al. Spheroid body-forming cells in the human gastric cancer cell line mkn-45 possess cancer stem cell properties. Int J Oncol. 2013;42:453–9.

    CAS  PubMed  Google Scholar 

  54. Li R, Wu X, Wei H, Tian S. Characterization of side population cells isolated from the gastric cancer cell line sgc-7901. Oncol Lett. 2013;5:877–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, et al. Identification of cancer stem cells in vincristine preconditioned sgc7901 gastric cancer cell line. J Cell Biochem. 2012;113:302–12.

    Article  CAS  PubMed  Google Scholar 

  56. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  CAS  PubMed  Google Scholar 

  57. Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, et al. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev. 2013;22:2221–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M. Cd44 and epcam: cancer-initiating cell markers. Curr Mol Med. 2008;8:784–804.

    Article  CAS  PubMed  Google Scholar 

  59. Prud’Homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 2012;18:2838–49.

    Article  PubMed  Google Scholar 

  60. Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22:248–58.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang C, Li C, He F, Cai Y, Yang H. Identification of cd44+cd24+ gastric cancer stem cells. J Cancer Res Clin Oncol. 2011;137:1679–86.

    Article  CAS  PubMed  Google Scholar 

  62. Chen W, Zhang X, Chu C, Cheung WL, Ng L, Lam S, et al. Identification of cd44+ cancer stem cells in human gastric cancer. Hepatogastroenterology. 2013;60:949–54.

    CAS  PubMed  Google Scholar 

  63. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, et al. Hyaluronan-cd44 interactions as potential targets for cancer therapy. FEBS J. 2011;278:1429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida M, Yasuda T, Hiramitsu T, Ito H, Nakamura T. Induction of apoptosis by anti-cd44 antibody in human chondrosarcoma cell line sw1353. Biomed Res. 2008;29:47–52.

    Article  CAS  PubMed  Google Scholar 

  65. Jang BI, Li Y, Graham DY, Cen P. The role of cd44 in the pathogenesis, diagnosis, and therapy of gastric cancer. Gut Liver. 2011;5:397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heider KH, Kuthan H, Stehle G, Munzert G. Cd44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother. 2004;53:567–79.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Huang K, Li X, Lin X, Zhu Z, Wu Y. Generation of a stable anti-human cd44v6 scfv analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother. 2010;59:933–42.

    Article  CAS  PubMed  Google Scholar 

  68. Naor D, Sionov RV, Ish-Shalom D. Cd44: structure, function, and association with the malignant process. Adv Cancer Res. 1997;71:241–319.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang CL, et al. Folic acid/ ce6 conjugated gold nanoclusters for NIR fluorescent imaging and photodynamic therapy with enhanced permission and retention. Adv Funct Mater. 2015;28:1314–25.

    Article  Google Scholar 

  70. Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui DX. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen F, Huang P, Zhu Y, Wu J, Zhang C, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3t/Gd3t dual-doped hydroxyapatite nanorods. Biomaterials. 2011;32:9031–9.

    Article  CAS  PubMed  Google Scholar 

  72. Cui D, Jin G, Gao T, Sun T, Tian F, Estrada GG, Gao H. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol. 2004;13:1136–45.

    CAS  Google Scholar 

  73. Code J, Tian FR, Hemandez Y, Bao CC, Baptisa P, Cui D, Stoeger T, et al. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale. 2015;7:9083–91.

    Article  Google Scholar 

  74. Li C, Yang J, Wang C, Liang S, Zhang C, Chen F, Fu HL, Wang K, Cui D. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymerengineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res Lett. 2014;9:244.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen L, Zheng J, Zhang Y, Yang L, Wang J, Ni J, Cui D, Yu C, Cai ZL. Tumor-specific expression of MicroRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol Ther. 2011;19:1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu HL, Ma Y, Lu LG, Hou P, Li BJ, Jin WL, Cui DX. TET1 exerts its tumor suppressor function by interacting with p53-EZH2 pathway in gastric cancer. J Biomed Nanotechnol. 2014;10:1217–30.

    Article  CAS  PubMed  Google Scholar 

  77. Khisamutdinov EF, Jasinski DL, Guo P. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano. 2014;8:4771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cui D, Zhang CL, Liu B, Shu Y, Du T, Li C, Pan F, Yang Y, Ni J, Li H, Brand-Saberi B, Guo PX. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci Rep. 2015;5:10732.

    Article  Google Scholar 

  79. Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  PubMed  Google Scholar 

  80. Huang P, et al. Light-triggered theranostic based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim C, Song HM, Cai X, Yao J, Wei A, Wang LV. In vivo photoacoustic mapping of lymphatic systems with Plasmon-resonant nanostars. J Mater Chem. 2011;21:2841–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater. 2013;25:3055–61; Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T. Gold nanostars: surfactant-free synthesis, 3d modelling, and two-photon photoluminescence imaging. Nanotechnology. 2012;23:075102.

    Google Scholar 

  83. Chen R, Wang X, Yao X, Zheng X, Wang J, Jiang X. Near-ir-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials. 2013;34:8314–22

    Google Scholar 

  84. Li C, et al. DC integrated inactive gastric cancer cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials. 2015;35:177–87.

    Article  CAS  Google Scholar 

  85. Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM, et al. Targetable gold nanorods for epithelial cancer therapy guided by near-ir absorption imaging. Small. 2012;8:746–53.

    Article  CAS  PubMed  Google Scholar 

  86. Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine. 2012;8:1355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5:4319–28.

    Article  PubMed  Google Scholar 

  88. Park J, Ku M, Kim E, Park Y, Hong Y, Haam S, et al. Cd44-specific supramolecular hydrogels for fluorescence molecular imaging of stem-like gastric cancer cells. Integr Biol. 2013;5:669–72.

    Article  CAS  Google Scholar 

  89. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of cd44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.

    Article  PubMed  Google Scholar 

  90. Burke AR, Singh RN, Carroll DL, Wood JC, D’Agostino Jr RB, Ajayan PM, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33:2961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu L, Yan GZ, Zhao K, Xu F. An implantable telemetry platform system with ASIC for in vivo monitoring of gastrointestinal physiological information. IEEE Sens J. 2015;12:3524–34.

    Article  Google Scholar 

  92. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–7.

    Article  CAS  PubMed  Google Scholar 

  93. Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009;20:125101.

    Article  PubMed  Google Scholar 

  94. Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. Rgd-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm. 2010;7:94–104.

    Article  CAS  PubMed  Google Scholar 

  96. Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev. 2014;43:7132–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li W, Sun X, Wang Y, Niu G, Chen X, Qian Z, et al. In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs. Biomed Optics Exp. 2014;5:2679–85.

    Article  Google Scholar 

  98. Nie L, Huang P, Li W, Yan X, Jin A, Wang Z, et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy. ACS Nano. 2014;8:12141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen YS, Frey W, Aglyamov S, Emelianov S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small. 2012;8:47–52.

    Article  CAS  PubMed  Google Scholar 

  100. Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8:5696–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Chinese Key Basic Research Program (973 Project) (No. 2010CB933901 and 2015CB931802), the National Natural Scientific Foundation of China (Grant No. 81225010, 81327002, and 31170961), and 863 project of China (no. 2012AA022703 and 2014AA020700), Shanghai Science and Technology Fund (No. 13NM1401500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxiang Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai

About this chapter

Cite this chapter

Cui, D. (2017). Multifunctional Nanoprobes for Theranostics of Gastric Cancer. In: Cui, D. (eds) Gastric Cancer Prewarning and Early Diagnosis System. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0951-2_11

Download citation

Publish with us

Policies and ethics