Skip to main content

Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation

  • Chapter
  • First Online:
Book cover The Biochemistry of Retinoid Signaling II

Part of the book series: Subcellular Biochemistry ((SCBI,volume 81))

Abstract

Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a “β-clam” motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP2:

Activating Protein 2

COUP:

Chicken Ovalbumin Upstream Promoter

CRABP:

Cellular Retinoic Acid Binding Protein

DR:

Direct Repeat

ERK:

Extracellular Signal-Regulated MAP kinase

ESC:

Embryonic Stem Cell

GCNF:

Germ Cell Nuclear Factor

LRH-1:

Liver Receptor Homologue-1

PPAR:

Peroxisome Proliferator Activated Receptor

RAR:

Retinoic Acid Receptor

RXR:

Retinoid X Receptor

RA:

Retinoic Acid

SF-1:

Steroidogenic Factor 1

SP1:

Specific Protein 1

TR2:

Testis Receptor 2

TRAP220:

Thyroid hormone Receptor-Associated Protein 220

RIP140:

Receptor Interacting Protein 140

References

  1. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA (2014) Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J Biol Chem 289:14941–14954

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asson-Batres MA, Ahmad O, Smith WB (2003) Expression of the cellular retinoic acid binding proteins, type II and type I, in mature rat olfactory epithelium. Cell Tissue Res 312:9–19

    CAS  PubMed  Google Scholar 

  3. Astrom A, Tavakkol A, Pettersson U, Cromie M, Elder JT, Voorhees JJ (1991) Molecular cloning of two human cellular retinoic acid binding proteins (CRABP). J Biol Chem 266:17662–17666

    CAS  PubMed  Google Scholar 

  4. Astrom A, Pettersson U, Chambon P, Voorhees JJ (1994) Retinoic acid induction of human cellular retinoic acid binding protein II gene transcription is mediated by retinoic acid receptor-retinoid X receptor heterodimers bound to one far upstream retinoic acid responsive element with 5 base pair spacing. J Biol Chem 269:22334–22339

    CAS  PubMed  Google Scholar 

  5. Bailey JS, Siu C-H (1988) Purification and partial characterization of novel binding protein for retinoic acid from neonatal rat. J Biol Chem 263:9326–9332

    CAS  PubMed  Google Scholar 

  6. Basher MM, Chytil F (1975) Cellular retinol-binding protein. Biochim Biophys Acta 411:87–96

    Article  Google Scholar 

  7. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 29:3286–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berry DC, Soltanian H, Noy N (2010) Repression of cellular retinoic acid-binding protein II during adipocyte differentiation. J Biol Chem 285:15324–15332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N (2012) Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 61:1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bi J, Hu X, Zhou FC, Wei L-N (2001) Upregulation of cellular retinoic acid binding protein I expression by ethanol. Dev Growth Differ 43:553–561

    Article  CAS  PubMed  Google Scholar 

  11. Boylan JF, Gudas LF (1991) Overexpression of the cellular retinoic acid binding protein I (CRABP-I) results in a reduction in differentiation specific gene expression in F9 teratocarcinoma cells. J Cell Biol 112:965–979

    Article  CAS  PubMed  Google Scholar 

  12. Budhu AS, Noy N (2002) Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 22:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang L, Wei L-N (1997) Characterization of a negative response-DNA element in the upstream region of the cellular retinoic acid-binding protein-I gene of the mouse. J Biol Chem 272:10144–10150

    Article  CAS  PubMed  Google Scholar 

  14. Chuang Y-S, Huang WH, Park SW, Persaud SD, Hung CH, Ho PC, Wei L-N (2011) Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem Cells 29:660–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Bruijn DR, Oerlemans F, Hendriks W, Baats E, Baats WE, Ploemacher R, Wieringa B, van Geurts Kessel A (1994) Normal development, growth and reproduction in cellular retinoic acid binding protein-I (CRABPI) null mutant mice. Differentiation 58:141–148

    Article  CAS  PubMed  Google Scholar 

  16. Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, Chomienne C (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol 19:7158–7167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong D, Ruuska SE, Levinthal DJ, Noy C (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    Article  CAS  PubMed  Google Scholar 

  18. Donovan M, Olofsson B, Gustafson AL, Decker L, Eriksson U (1995) The cellular retinoic acid binding proteins. J Steroid Biochem Mol Biol 55:479–485

    Google Scholar 

  19. Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85

    Article  CAS  PubMed  Google Scholar 

  20. Fogh K, Voorhees JJ, Astrom A (1993) Expression, purification and binding properties of human cellular retinoic acid binding protein type I and II. Arch Biochem Biophys 300:751–755

    Article  CAS  PubMed  Google Scholar 

  21. Gaub MP, Lutz Y, Ghyselinck NB, Scheuer I, Pfister V, Chambon P, Rochette-Egly C (1998) Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies. J Histochem Cytochem 46:1103–1111

    Article  CAS  PubMed  Google Scholar 

  22. Giguere V, Lyn S, Yip P, Siu C, Amin S (1990) Molecular cloning of cDNA encoding a second cellular retinoic acid binding protein. Proc Natl Acad Sci U S A 87:6233–6237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorry P, Lufkin T, Dierich A, Rochette-Egly C, Decimo D, Dolle P, Mark M, Durand B, Chambon P (1994) The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci U S A 91:9032–9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta P, Huq MDM, Ha SG, Park SW, Khan AA, Tsai N-P, Wei L-N (2008) Retinoic acid-stimulated sequential phosphorylation, PML recruitment and SUMOylation of nuclear receptor TR2 to suppress Oct4. Proc Natl Acad Sci U S A 105:11424–11429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kleywegt GJ, Bergfors T, Senn H, Motte PL, Gsell B, Shudo K, Jones TA (1994) Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Structure 2:1241–1258

    Article  CAS  PubMed  Google Scholar 

  26. Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, Lemur M, Chambon P (1994) Mice deficient in cellular retinoic acid binding protein II or in both CRABPI and CRABPII are essentially normal. Development 121:539–548

    Google Scholar 

  27. Li E, Norris AW (1996) Structure/function of cytoplasmic vitamin A binding proteins. Annu Rev Nutr 16:205–234

    Article  CAS  PubMed  Google Scholar 

  28. Li XH, Ong DE (2003) Cellular retinoic acid binding protein II gene expression is directly induced by estrogen but not retinoic acid in rat uterus. J Biol Chem 278:35819–35825

    Article  CAS  PubMed  Google Scholar 

  29. Majumbar A, Petrescu AD, Xiong Y, Noy N (2011) Nuclear translocation of cellular retinoic acid binding protein II is regulated by retinoic acid-controlled Sumoylation. J Biol Chem 286:42749–42757

    Article  CAS  Google Scholar 

  30. McPherson LA, Woodfield GW, Weigel RJ (2007) AP2 transcription factors regulate expression of CRABPII in hormone responsive breast carcinoma. J Surg Res 138:71–78

    Article  CAS  PubMed  Google Scholar 

  31. Napoli JL (1996) Retinoic acid biosynthesis and metabolism. FASEB J 10:993–1001

    CAS  PubMed  Google Scholar 

  32. Norris AW, Cheng L, Giguere V, Rosenberger M, Li E (1994) Measurement of sub-nanomolar retinoic acid binding affinities for cellular retinoic acid bind protein by fluorometric titration. Biochim Biophys Acta 1037:192–199

    Google Scholar 

  33. Norris AW, Rong D, d’Avignon DA, Rosenberger M, Tasaki K, Li E (1995) Nuclear magnetic resonance studies demonstrate differences in the interaction of retinoic acid with two highly homologous cellular retinoic acid binding proteins. Biochemistry 34:15564–15573

    Article  CAS  PubMed  Google Scholar 

  34. Noy N (2000) Retinoid binding proteins: mediators of retinoid action. Biochem J 348:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ong DE, Chytil F (1975) Retinoic acid-binding protein in rat tissue: partial purification and comparison to rat tissue retinol-binding protein. J Biol Chem 250:6113–6117

    CAS  PubMed  Google Scholar 

  36. Ong DE, Newcomer ME, Chytil F (1994) Cellular retinoid-binding proteins. In: Sport MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry and medicine, vol 2. Raven, New York, pp 283–317

    Google Scholar 

  37. Park SW, Li G, Lin YP, Faroqui MJ, Ge K, Roeder RG, Wei L-N (2005) Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol Cell 19:643–653

    Article  CAS  PubMed  Google Scholar 

  38. Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei L-N (2007) Sumoylation of Tr2 orphan receptor involves PML and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 14:68–75

    Article  CAS  PubMed  Google Scholar 

  39. Park SW, Huang WH, Persaud SD, Wei L-N (2009) RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acid Res 37:7085–7094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parmar MB, Lee JJA, Wright JM (2013) Duplicated crabp1 and crabp2 genes in medaka (Oryzlas latipes): gene structrure, phylogenetic relationship and tissue specific distribution of transcripts. Comp Biochem Physiol B Biochem Mol Biol 165:10–18

    Article  CAS  PubMed  Google Scholar 

  41. Perez-Castro AV, Tran VT, Nguyen-Huu MC (1993) Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I. Development 119:363–375

    CAS  PubMed  Google Scholar 

  42. Persaud SD, Lin Y-W, Wu C-Y, Kagechika H, Wei LN (2013) Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal 25:19–25

    Article  CAS  PubMed  Google Scholar 

  43. Plum LA, Clagett-Dame M (1995) 9-cis-retinoic acid selectively activates the cellular retinoic acid binding protein-II gene in human neuroblastoma cells. Arch Biochem Biophy 319:457–463

    Article  CAS  Google Scholar 

  44. Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992) Differential distribution patterns of CRABPI and CRABPII transcripts during mouse embryogenesis. Development 115:973–987. FEBS

    CAS  PubMed  Google Scholar 

  45. Ruff SJ, Ong DE (2000) Cellular retinoic acid binding protein is associated with mitochondria. FEBS Lett 487:282–286

    Article  CAS  PubMed  Google Scholar 

  46. Sani BP, Hill DL (1974) Retinoic acid: a binding protein in metatarsal skin. Biochem Biophys Res Commun 61:1276–1282

    Article  CAS  PubMed  Google Scholar 

  47. Sanquer S, Gilchrest BA (1994) Characterization of human cellular retinoic acid-binding proteins I and II: ligand binding properties and distribution in skin. Arch Biochem Biophys 311:86–94

    Article  CAS  PubMed  Google Scholar 

  48. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth results from alternate activation of two different nuclear receptors. Cell 129:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sessler RJ, Noy N (2005) A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol Cell 18:343–353

    Article  CAS  PubMed  Google Scholar 

  50. Shubeita HE, Sambrook JF, McCormick AM (1987) Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A 84:5645–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sundelin J, Das S, Eriksson U, Rask L, Peterson P (1985) The primary structure of bovine cellular retinoic acid binding protein. J Biol Chem 260:6494–6499

    CAS  PubMed  Google Scholar 

  52. Thomas JR, Bratt JM, Banaszak LJ (1995) Crystal structures of cellular retinoic binding protein I show increased access to the binding cavity due to formation of an intermolecular b-sheet. J Mol Biol 252:433–446

    Article  Google Scholar 

  53. Vahlquist A, Andersson E, Coble BI, Rollman O, Torma H (1996) Increased concentrations of 3,4-didehydroretinol and retinoic acid-binding protein (CRABPII) in human squamous cell carcinoma and keratoacanthoma but not in basal cell carcinoma of the skin. J Invest Dermatol 106:1070–1074

    Article  CAS  PubMed  Google Scholar 

  54. Vo HP, Crowe DL (1998) Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA mediated tumor cell proliferation and invasion. Anticancer Res 18:217–224

    CAS  PubMed  Google Scholar 

  55. Vreeland AC, Yu S, Levi L, de Barros RD, Noy N (2014) Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid binding protein 2. Mol Cell Biol 34:2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei L-N (2012) Chromatin remodeling and epigenetic regulation of the CrabpI gene in adipocyte differentiation. BBAMCB 1821:206–212

    CAS  Google Scholar 

  57. Wei L-N, Chang L (1996) Promoter and upstream regulatory activities of the gene for retinoic acid binding protein I from the mouse. J Biol Chem 271:5073–5078

    Article  CAS  PubMed  Google Scholar 

  58. Wei L-N, Lee C-H (1994) Demethylation in the 5’-flanking region of mouse CRABP-I gene is associated with its high level of expression in mouse embryos and facilitates its induction by retinoic acid in P19 embryonal carcinoma cells. Dev Dyn 201:1–10

    Article  CAS  PubMed  Google Scholar 

  59. Wei L-N, Mertz JR, Goodman DS, Nguyen-Huu MC (1987) Cellular retinoic acid- and cellular retinol-binding proteins: cDNA cloning, chromosomal assignment and tissue specific expression. Mol Endocrinol 1:526–534

    Article  CAS  PubMed  Google Scholar 

  60. Wei L-N, Blaner WS, Goodman DS, Nguyen-Huu MC (1989) Regulation of the cellular retinoid-binding proteins and their mRNAs during P19 embryonal carcinoma cell differentiation induced by retinoic acid. Mol Endocrinol 3:454–463

    Article  CAS  PubMed  Google Scholar 

  61. Wei L-N, Tsao J-L, Chu Y-S, Jeannotte L, Nguyen-Huu MC (1990) Molecular cloning and transcriptional mapping of the mouse cellular retinoic acid- binding protein gene. DNA Cell Biol 9:471–478

    Article  CAS  PubMed  Google Scholar 

  62. Wei L-N, Chen JC, Tsao J-L, Chu Y-S, Nguyen-Huu MC (1991) A 3 kb sequence of the mouse cellular retinoic acid-binding protein gene upstream region mediates spatial and temporal LacZ expression in transgenic mouse embryos. Development 112:847–854

    CAS  PubMed  Google Scholar 

  63. Wei L-N, Lee C-H, Chang SL, Chu YS (1991) Pathogenesis in transgenic mice expressing bovine cellular retinoic acid-binding protein. Dev Growth Differ 34:479–488

    Article  Google Scholar 

  64. Wei L-N, Lee C-H, Chang L (1995) Retinoic acid induction of mouse cellular retinoic acid-binding protein-I gene expression is enhanced by sphinganine. Mol Cell Endocrinol 111:207–211

    Article  CAS  PubMed  Google Scholar 

  65. Wei L-N, Chang L, Lee C-H (1997) Studies of over-expressing cellular retinoic acid binding protein-I in cultured cells and transgenic mice. Trangenics 2:201–209

    CAS  Google Scholar 

  66. Wei L-N, Lee C-H, Filipcik P, Chang L (1997) Regulation of the mouse cellular retinoic acid-binding protein I gene by thyroid hormone and retinoids in transgenic mouse embryos and P19 cells. J Endocrinol 155:35–46

    Article  CAS  PubMed  Google Scholar 

  67. Wei L-N, Chang L, Hu X (1999) Studies of the type I cellular retinoic acid binding protein mutants and their biological activities. Mol Cell Biochem 200:69–76

    Article  CAS  PubMed  Google Scholar 

  68. Wolf G (2009) Cellular Retinoic acid-binding protein II: coactivator of the transactivation by the retinoic acid receptor complex RAR.RXR. Nutr Rev 58:151–153

    Article  Google Scholar 

  69. Yuan J, Tang Z, Yang S, Li K (2013) CRABP2 promotes myoblast differentiation and is modulated by the transcription factors MyoD and Sp1 in C2C12 cells. PLoS One 8:e55479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK54733, and DK60521, the Dean’s Commitment, and the Distinguished McKnight Professorship of University of Minnesota (LNW). I thank Shawna Persaud for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Na Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wei, LN. (2016). Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling II. Subcellular Biochemistry, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0945-1_6

Download citation

Publish with us

Policies and ethics