Skip to main content

Carotenoids and Retinoids: Nomenclature, Chemistry, and Analysis

  • Chapter
  • First Online:
The Biochemistry of Retinoid Signaling II

Part of the book series: Subcellular Biochemistry ((SCBI,volume 81))

Abstract

Carotenoids are polyenes synthesized in plants and certain microorganisms and are pigments used by plants and animals in various physiological processes. Some of the over 600 known carotenoids are capable of metabolic conversion to the essential nutrient vitamin A (retinol) in higher animals. Vitamin A also gives rise to a number of other metabolites which, along with their analogs, are known as retinoids. To facilitate discussion about these important molecules, a nomenclature is required to identify specific substances. The generally accepted rules for naming these important molecules have been agreed to by various Commissions of the International Union of Pure and Applied Chemistry and International Union of Biochemistry. These naming conventions are explained along with comparisons to more systematic naming rules that apply for these organic chemicals. Identification of the carotenoids and retinoids has been advanced by their chemical syntheses, and here, both classical and modern methods for synthesis of these molecules, as well as their analogs, are described. Because of their importance in biological systems, sensitive methods for the detection and quantification of these compounds from various sources have been essential. Early analyses that relied on liquid adsorption and partition chromatography have given way to high-performance liquid chromatography (HPLC) coupled with various detection methods. The development of HPLC coupled to mass spectrometry, particularly LC/MS-MS with Multiple Reaction Monitoring, has resulted in the greatest sensitivity and specificity in these analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTCL:

cutaneous T-cell lymphoma

HPLC:

high performance liquid chromatography

HWE:

Horner-Wadsworth-Emmons modification

IUB:

International Union of Biochemistry

IUPAC:

International Union of Pure and Applied Chemistry

LC/MS:

liquid chromatography/mass spectrometry

LC/MS-MS:

liquid chromatography/mass spectrometry-mass spectrometry

MRM:

multiple reaction monitoring

RAL:

retinal

RA:

retinoic acid

RAR:

retinoic acid receptor

RXR:

retinoid X receptor

ROL:

retinol

TTNPB:

tetrahydro-tetramethyl-napthalenyl-propenyl-benzoic acid

UV:

ultraviolet

References

  1. Anding AL, Nieves NJ, Abzianidze VV, Collins MD, Curley RW Jr, Clagett-Dame M (2011) 4-Hydroxybenzyl modification of the highly teratogenic retinoid, 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB), yields a compound that induces apoptosis in breast cancer cells and shows reduced teratogenicity. Chem Res Toxicol 24:1853–1861

    Article  CAS  PubMed  Google Scholar 

  2. Blount JD, McGraw KJ (2008) Signal functions of carotenoid colouration. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 4: natural functions. Birkhauser Verlag, Basel, pp 213–236

    Chapter  Google Scholar 

  3. Britton G (2008) Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 4: natural functions. Birkhauser Verlag, Basel, pp 189–212

    Chapter  Google Scholar 

  4. Cifelli CJ, Green JB, Green MH (2007) Use of model-based compartmental analysis to study vitamin A kinetics and metabolism. Vitam Horm 75:161–195

    Article  CAS  PubMed  Google Scholar 

  5. Commission on Biochemical Nomenclature (1974) Nomenclature of carotenoids. Pure Appl Chem 41:405–431

    Google Scholar 

  6. Commission on Biochemical Nomenclature (1982) Nomenclature of retinoids. Eur J Biochem 129:1–5

    Article  Google Scholar 

  7. Commission on the Nomenclature of Biological Chemistry (1960) Definitive rules for the nomenclature of vitamins. J Am Chem Soc 82:5575–5581

    Article  Google Scholar 

  8. Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Curley RW Jr, Carson DL (1987) Synthesis of the 4-oxygenated retinoid metabolites. Drug Des Deliv 1:219–224

    PubMed  Google Scholar 

  10. Dawson MI, Hobbs PD (1994) The synthetic chemistry of retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven Press Ltd, New York, pp 5–178

    Google Scholar 

  11. Dominguez B, Alvarez A, de Lera AR (2003) Recent advances in the synthesis of retinoids. Org Prep Int 35:239–306

    Article  CAS  Google Scholar 

  12. Dragnev KH, Ma T, Cyrus J, Galimberti F, Memoli V, Busch AM, Tsongalis GJ, Seltzer M, Johnstone D, Erkmen CP, Nugent W, Rigas JR, Liu X, Freemantle SJ, Kurie JM, Waxman S, Dmitrovsky E (2011) Bexarotene plus erlotinib suppress lung carcinogenesis independent of KRAS mutations in two clinical trials and transgenic models. Cancer Prev Res 4:818–828

    Article  CAS  Google Scholar 

  13. Eroglu A, Hruszkewycz DP, Curley RW Jr, Harrison EH (2010) The eccentric cleavage product of β-carotene, β-apo-13-carotenone, functions as an antagonist of RXRα. Arch Biochem Biophys 504:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eroglu A, Hruszkewycz DP, dela Sena C, Narayanasamy S, Riedl KM, Kopec RE, Schwartz SJ, Curley RW Jr, Harrison EH (2012) Naturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. J Biol Chem 287:15886–15895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ettre LS (1980) Evolution of liquid chromatography: a historical overview. In: Horvath C (ed) High-performance liquid chromatography: advances and perspectives. Academic Press Inc, New York, pp 2–74

    Google Scholar 

  16. Furr HC (2004) Analysis of retinoids and carotenoids: problems resolved and unsolved. J Nutr 134:281S–285S

    CAS  PubMed  Google Scholar 

  17. Gudas LJ (2013) Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol 24:701–705

    Article  CAS  PubMed  Google Scholar 

  18. Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821:70–77

    Article  CAS  PubMed  Google Scholar 

  19. Hartman DA, Basil JB, Robertson LW, Curley RW Jr (1990) Microbial transformation of retinoic acid by Cunninghamella echinulata and Cunninghamella blakesleeana. Pharm Res 7:270–273

    Article  CAS  PubMed  Google Scholar 

  20. Julia M, Arnould D (1973) Use of sulfones in synthesis. III. Synthesis of vitamin A. Bull Soc Chim Fr 2:746–750

    Google Scholar 

  21. Kane MA (2012) Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta 1821:10–20

    Article  CAS  PubMed  Google Scholar 

  22. Karrer P, Helfenstein A, Wehrli H, Wettstein A (1930) Pflanzenfarbstoffe XXV. Uber die constitution des lycopins und carotins. Helv Chim Acta 13:1084–1099

    Article  CAS  Google Scholar 

  23. Karrer P, Morf R, Schopp K (1931) Zur kenntnis des vitamins-A aus fischtranen. II. Helv Chim Acta 14:1431–1436

    Article  CAS  Google Scholar 

  24. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  25. Koch D, Gartner W (1997) Steric hindrance between chromophore substituents as the driving force of rhodopsin isomerization: 10-methyl-13-demethyl retinal containing rhodopsin. Photochem Photobiol 65:181–186

    Article  CAS  PubMed  Google Scholar 

  26. Landrum JT (2013) Reactive oxygen and nitrogen species in biological systems: reactions and regulation by carotenoids. In: Tanumihardjo SA (ed) Carotenoids and human health. Springer, New York, pp 57–101

    Chapter  Google Scholar 

  27. le Maire A, Alvarez S, Shankaranarayanan P, de Lera AR, Bourguet W, Gronemeyer H (2012) Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem 12:505–527

    Article  PubMed  Google Scholar 

  28. Lindshield BL, Canene-Adams K, Erdman JW (2007) Lycopenoids: are lycopene metabolites bioactive? Arch Biochem Biophys 458:136–140

    Article  CAS  PubMed  Google Scholar 

  29. Loeliger P, Bollag W, Mayer H (1980) Arotinoids, a new class of highly active retinoids. Eur J Med Chem 15:9–15

    CAS  Google Scholar 

  30. Maercker A (1965) The Wittig reaction. Org React 14:270–490

    CAS  Google Scholar 

  31. McCollum EV, Davis M (1913) Necessity of certain lipins in the diet during growth. J Biol Chem 15:167–175

    CAS  Google Scholar 

  32. Morton RA (1944) Chemical aspects of the visual process. Nature 153:69–71

    Article  CAS  Google Scholar 

  33. Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10

    Article  CAS  PubMed  Google Scholar 

  34. Sporn MB, Dunlop NM, Newton DL, Smith JS (1976) Prevention of chemical carcinogenesis by a vitamin A and its synthetic analogs (retinoids). Fed Proc Fed Am Soc Exp Biol 35:1332–1338

    CAS  Google Scholar 

  35. Stephens-Jarnagin A, Miller DA, DeLuca HF (1985) The growth supporting activity of a retinoidal benzoic acid derivative and 4,4-difluororetinoic acid. Arch Biochem Biophys 237:11–16

    Article  CAS  PubMed  Google Scholar 

  36. Tang G (2012) Techniques for measuring vitamin A activity from β-carotene. Am J Clin Nutr 96(suppl):1185S–1188S

    Article  CAS  PubMed  Google Scholar 

  37. Valla AR, Cartier DL, Labia R (2004) Chemistry of natural retinoids and carotenoids: challenges for the future. Curr Org Synth 1:167–209

    Article  CAS  Google Scholar 

  38. Wald G (1934) Carotenoids and the vitamin A cycle in vision. Nature 134:65

    Article  CAS  Google Scholar 

  39. Widmer E (1985) Synthetic advances in the carotenoid field. Pure Appl Chem 57:741–752

    Article  CAS  Google Scholar 

  40. Yeum K-J, Aldini G, Russell RM, Krinsky NI (2009) Antioxidant/pro-oxidant actions of carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 5: nutrition and health. Birkhauser Verlag, Basel, pp 235–268

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl H. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harrison, E.H., Curley, R.W. (2016). Carotenoids and Retinoids: Nomenclature, Chemistry, and Analysis. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling II. Subcellular Biochemistry, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0945-1_1

Download citation

Publish with us

Policies and ethics