Skip to main content

Infiltration

  • Chapter
  • First Online:
Distributed Hydrologic Modeling Using GIS

Part of the book series: Water Science and Technology Library ((WSTL,volume 74))

  • 1736 Accesses

Abstract

Infiltration rate excess and saturation rate excess runoff are dominant processes in many watersheds. Estimation of infiltration parameters over large areas poses a challenge to distributed watershed modeling. Accuracy may vary depending on how well the soil maps represent the soil and the hydrologic conditions controlling the process across scales from field to watershed. How the soil properties are represented in the distributed model, its configuration as single or multiple layers, can affect the accuracy and reliability of hydrologic prediction. This chapter deals with deriving initial values of infiltration equation parameters from maps of soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja, L.R. 1983. Modeling infiltration into crusted soils by the Green-Ampt approach. Soil Science Society of America Journal 47(3): 412–418.

    Article  Google Scholar 

  • Ajami, N.K., Q. Duan, S. Sorooshian. 2007. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resource Research 43(1). http://dx.doi.org/10.1029/2005WR004745.

  • Aspinall, R.J. and D.M. Pearson. 1993. Data quality and spatial analysis: analytical use of GIS for ecological modeling. Proceedings of the Second International Conference on Integrated Geographic Information Systems and Environmental Modeling, Sept 26–30, 1993, Breckenridge, Colorado.

    Google Scholar 

  • Beven, K., and A. Binley. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes 6(3): 279–298.

    Article  Google Scholar 

  • Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrology Paper No. 3. Fort Collins, Colorado: Colorado State University.

    Google Scholar 

  • Burrough, P.A. 1986. Principles of geographic information systems for land resources assessment. Monographs on soil and resources survey, No. 12, 103–135. Oxford Science Publications.

    Google Scholar 

  • Buttenfield, B. 1993. Representing data quality. Cartographica 30(2–3): 1–7.

    Article  Google Scholar 

  • Chow, V.T., D.R. Maidment, and L.W. Mays. 1988. Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Chahinian, N., R. Moussa, P. Andrieux, and M. Voltz. 2005. Comparison of infiltration models to simulate flood events at the field scale. Journal of Hydrology 306(1): 191–214.

    Article  Google Scholar 

  • Corradini, C., F. Melone, and R.E. Smith. 1994. Modeling infiltration during complex rainfall sequences. Water Resources Research 30(10): 2777–2784.

    Article  Google Scholar 

  • Corradini, C., F. Melone, and R.E. Smith. 1997. A unified model for infiltration and redistribution during complex rainfall patterns. Journal of Hydrology 192(1–4): 104–124.

    Article  Google Scholar 

  • Corradini, C., A. Flammini, R. Morbidelli, and R.S. Govindaraju. 2011. A conceptual model for infiltration in two-layered soils with a more permeable upper layer: From local to field scale. Journal of Hydrology 410(1–2): 62–72.

    Article  Google Scholar 

  • Davis, J.C. 1973. Statistics and Data analysis in geology. New York: John Wiley and Sons. 71p.

    Google Scholar 

  • Fisher, P. 1993. Visualizing uncertainty in soil maps by animation. Cartographica 30(2–3): 20–27.

    Article  Google Scholar 

  • Govindaraju, R.S., R. Morbidelli, and C. Corradini. 2001. Areal infiltration modeling over soils with spatially correlated hydraulic conductivities. Journal of Hydrology Engineering 6(2): 150–158.

    Article  Google Scholar 

  • Govindaraju, R.S., C. Corradini, and R. Morbidelli. 2012. Local- and field-scale infiltration into vertically non-uniform soils with spatially-variable surface hydraulic conductivities. Hydrological Processes 26(21): 3293–3301.

    Article  Google Scholar 

  • Green, W.H., and G.A. Ampt. 1911. Studies in soil physics I: The flow of air and water through soils. Journal of Agric Science 4: 1–24.

    Article  Google Scholar 

  • Gupta, R.K., R.P. Rudra, W.T. Dickinson, and D.E. Elrick. 1994. Modeling spatial patterns of three infiltration parameters. Canadian Agricultural Engineering 36(1): 9–13.

    Google Scholar 

  • Heuvelink, G.B.M, Burrough, P.A., Leenaers. 1990. Error propagation in spatial modeling with GIS Ed. Harts et al. 453–462.

    Google Scholar 

  • Jetten, V.G., H.T.H. Riezebos, F. Hoefsloot, and J. Van Rossum. 1993. Spatial variability of infiltration and related properties of tropical soils. Earth Surface Processes and Landforms 18: 477–488.

    Article  Google Scholar 

  • Koren, V.I., M. Smith, D. Wang, Z. Zhang, 2000. Use of soil property data in the derivation of conceptual rainfall-runoff model parameters, 15th Conference on Hydrology, Long Beach, California, pp. 103–106.

    Google Scholar 

  • Koren, V.I., Smith, M., Q. Duan. 2003. Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. In: Calibration of Watershed Models, Water Science and Application. Ed. Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R. Vol. 6, 239–254. American Geophysical Union.

    Google Scholar 

  • Lunetta, R.S., R.G. Congalton, J.R. Jensen, K.C. McGwire, and L.R. Tinney. 1991. Remote sensing and geographic information system data integration: Error sources and research issues. Photogrammetric Engineering and Remote Sensing 57(6): 677–687.

    Google Scholar 

  • Mein, R.G., and C.L. Larson. 1973. Modeling infiltration during steady rains. Water Resources Research 9(2): 384–394.

    Article  Google Scholar 

  • Parlange, J.Y., W.L. Hogarth, J.F. Boulier, J. Touma, R. Haverkamp, and G. Vauchad. 1985. Flux and water content relation at the soil surface. Soil Science Society of America Journal 49(2): 285–288.

    Article  Google Scholar 

  • Philip, J.R. 1957. The theory of infiltration 4. Sorptivity and algebraic infiltration equations. Soil Science 84: 257–264.

    Article  Google Scholar 

  • Rawls, W.J., D.L. Brakensiek, and N. Miller. 1983a. Green and Ampt infiltration parameters from soils data. ASCE, Journal of Hydraulic Engineering 109(1): 62–70.

    Google Scholar 

  • Rawls, W.J., D.L. Brakensiek, and B. Soni. 1983b. Agricultural management effects on soil water processes, Part I: Soil water retention and Green and Ampt infiltration parameters. Transaction of the American Society of Agricultural Engineers 26(6): 1747–1752.

    Google Scholar 

  • Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics I: 318–333.

    Google Scholar 

  • Risse, L.M., B.Y. Liu, and M.A. Nearing. 1995a. Using curve numbers to determine baseline values of Green-Ampt effective hydraulic conductivities. Water Resources Bulletin 31(1): 147–158.

    Article  Google Scholar 

  • Risse, L.M., M.A. Nearing, and X.C. Zhang. 1995b. Variability in Green-Ampt effective hydraulic conductivity under fallow conditions. Journal of Hydrology 169: 1–24.

    Article  Google Scholar 

  • Salvucci, G.D., and D. Entekhabi. 1994. Explicit expressions for Green-Ampt (delta function diffusivity) infiltration rate and cumulative storage. Water Resources Research 30(9): 2661–2663.

    Article  Google Scholar 

  • Saxton, K.E., and W.J. Rawls. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5): 1569–1578.

    Article  Google Scholar 

  • Saxton, K.E. and P.H. Willey. 2005. Soil water characteristics hydraulic properties calculator. Agricultural Research Service.

    Google Scholar 

  • Sisson, J.B., and P.J. Wieranga. 1981. Spatial variability in Green-Ampt effective hydraulic conductivity under fallow conditions. Soil Science Society of America Journal 46: 20–26.

    Google Scholar 

  • Smith, R.E., C. Corradini, and F. Melone. 1993. Modeling infiltration for multistorm runoff events. Water Resources Research 29(1): 133–143.

    Article  Google Scholar 

  • Tefsa, T.K., D.G. Tarboton, D.W. Watson, K.A. Schreuders, M.E. Baker, and R.M. Wallace. 2011. Extraction of hydrological proximity measures from DEMs using parallel processing. Environmental Modelling & Software, 26(12): 1696–1709.

    Google Scholar 

  • Van den Putte, A., G. Govers, A. Leys, C. Langhans, W. Clymans, and J. Diels. 2013. Estimating the parameters of the Green-Ampt infiltration equation from rainfall simulation data: Why simpler is better. Journal of Hydrology 476: 332–344.

    Article  Google Scholar 

  • Venkata Reddy, K., T.I. Eldho, E.P. Rao, and N. Hengade. 2007. A kinematic-wave-based distributed watershed model using FEM, GIS and remotely sensed data. Hydrological Processes 21(20): 2765–2777.

    Article  Google Scholar 

  • Veregin, H. 1994. Integration of simulation modeling and error propagation for the buffer operation in GIS. Photogrammetric Engineering and Remote Sensing 60(4): 427–835.

    Google Scholar 

  • Webster, R. and MA. Oliver, 1990. Statistical methods in soil and land resource survey. In: Spatial Information systems, 316 pp. Oxford: Oxford University Press.

    Google Scholar 

  • Web Soil Survey. 2016. United States Department of Agriculture, Natural Resources Conservation Service. Accessed, March 3016. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

  • Wesseling, C.G. and G.B.M. Heuvelink. 1993. ADAM User’s manual. Department of Physical Geography, University of Utrecht.

    Google Scholar 

  • Williams, J., and M. Bonell. 1988. The influence of scale of measurement of the spatial and temporal variability of the philip infiltration parameters—An experimental study in an australian savannah woodland. Journal of Hydrology 104: 33–51.

    Article  Google Scholar 

  • Yen, H., Xiuying Wang, Darrell G. Fontane, R. Daren Harmel, and Mazdak Arabi. 2014. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environmental Modelling and Software 54: 211–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baxter E. Vieux .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieux, B.E. (2016). Infiltration. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0930-7_5

Download citation

Publish with us

Policies and ethics