Skip to main content

Spatial Variability Measuring Information Content

  • Chapter
  • First Online:
  • 1720 Accesses

Part of the book series: Water Science and Technology Library ((WSTL,volume 74))

Abstract

When building a fully distributed grid-based distributed hydrologic model from geospatial data, a fundamental question is: What resolution is adequate for capturing the spatial variability of a parameter or input? The model computational elements, whether finite element or difference, require parameter values that are representative of the grid cell. The composite for the model should then be representative of the spatial variation found in the watershed. When solving conservation of mass, momentum, or energy, a representative parameter value is required for that element size. The correspondence of the computational element size and the sampled resolution of the digital map affect how well the model will represent the spatial variation of parameters and modeled rainfall runoff. Within each grid cell, the conservation of mass and momentum is controlled by the parameters taken from special purpose maps whose values are hydraulic roughness, rainfall intensity, slope and infiltration rate for each computational element. The grid cell map supplies parameter values within the model grid. To take advantage of distributed parameter hydrologic models, the spatial distribution of inputs (e.g., rainfall) and parameters (e.g., hydraulic roughness) should be sampled at a sufficiently fine resolution to capture the spatial variability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bathurst, J.C., and P.E. O’Connell. 1992. Future of distributed modeling—The System-Hydrologique-Europeen. Journal of Hydrological Process 6(3): 265–277.

    Article  Google Scholar 

  • Beven, K. 1985. Distributed Models. In: Hydrological Forecasting. Edited by. Anderson, M.G. and Burt, T.P. 405–435. John Wiley, New York.

    Google Scholar 

  • Brasington, J., and K. Richards. 1998. Interactions between Model predictions, parameters and DTM scales for TOPMODEL. Computers and Geosciences 24(4): 299–314.

    Article  Google Scholar 

  • Dunne, T., X.C. Zhang, and B.F. Aubry. 1991. Effects of rainfall, vegetation and micro-topography on infiltration and runoff. Water Resources Research 27: 2271–2285.

    Article  Google Scholar 

  • Farajalla, N.S., and B.E. Vieux. 1994. Capturing the essential spatial variability in distributed hydrologic modeling: Hydraulic roughness. Journal of Hydrological Process 8(3): 221–236.

    Article  Google Scholar 

  • Farajalla, N.S., and B.E. Vieux. 1995. Capturing the essential spatial variability in distributed hydrologic modeling: Infiltration parameters. Journal of Hydrological Process 9(1): 55–68.

    Article  Google Scholar 

  • Farmer, J.D., Ott, E. and Yorke, J.A. 1983. The dimension of chaotic attractors. Physica D: Nonlinear Phenomena, 7(1–3), 265–278. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Freeze, R.A., and R.L. Harlan. 1969. Blueprint of a physically-based digitally-simulated hydrologic response model. Journal of Hydrology 9: 237–258.

    Article  Google Scholar 

  • Hengl, T., G.B. Heuvelink, and D.G. Rossiter. 2007. About regression-kriging: from equations to case studies. Computers & Geosciences 33(10): 1301–1315.

    Google Scholar 

  • Jana, R.B., and B.P. Mohanty. 2012. On topographic controls of soil hydraulic parameter scaling at hillslope scales. Water Resources Research 48: W02518. doi:10.1029/2011WR011204.

    Google Scholar 

  • Leavesley, G.H. 1989. Problems of snowmelt runoff modeling for a variety of physiographic climatic conditions. Hydrological Sciences 34: 617–634.

    Article  Google Scholar 

  • Mandelbrot, B.B., 1988, The Science of Fractal Images. Edited by. Heinz-Otto, Peitgin and Saupe, Deitmar, 2–21. Springer-Verlag, New York.

    Google Scholar 

  • Mendoza, P.A., M.P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta. 2015. Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Research 51: 716–728. doi:10.1002/2014WR015820.

    Google Scholar 

  • Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    Article  Google Scholar 

  • Niedda, M. 2004. Upscaling hydraulic conductivity by means of entropy of terrain curvature representation. Water Resources Research 40: W04206. doi:10.1029/2003WR002721.

    Article  Google Scholar 

  • Nourani, V., and S. Zanardo. 2014. Wavelet-based regularization of the extracted topographic index from high-resolution topography for hydro-geomorphic applications. Hydrological Processes 28: 1345–1357. doi:10.1002/hyp.9665.

    Article  Google Scholar 

  • Papoulis, A. 1984. Probability, Random Variables and Stochastic Processes, 2nd ed, 500–567. New York: McGraw-Hill.

    Google Scholar 

  • Philip, J.R. 1980. Field heterogeneity. Water Resources Research 16(2): 443–448.

    Article  Google Scholar 

  • Quinn, P., Beven, K., Chevallier, P. and Planchon, O. 1991. The Prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. In: Terrain Analysis and Distributed Modeling in Hydrology. Edited by. Beven, K.J. and Moore, I.D., 63–83. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Rao, P.S.C., and R.J. Wagenet. 1985. Spatial variability of pesticides in field soils: Methods for data analysis and consequences. Water Science 33: 18–24.

    Google Scholar 

  • Saupe, Deitmar, 1988. The Science of Fractal Images. Edited by. Heinz-Otto, Peitgin and Saupe, Deitmar, 82–84. Springer-Verlag, New York.

    Google Scholar 

  • Seyfried, M.S., and B.P. Wilcox. 1995. Scale and nature of spatial variability: field examples having implications for hydrologic modeling. Water Resources Research 31(1): 173–184.

    Article  Google Scholar 

  • Shannon, C.E. and Weaver, W. 1964. The Mathematical Theory of Communication. The Bell System Technical Journal, University of Illinois Press, Urbana.

    Google Scholar 

  • Smith, R.E., and R.H.B. Hebbert. 1979. A Monte Carlo analysis of the hydrologic effects of spatial variability of infiltration. Water Resources Research 15: 419–429.

    Article  Google Scholar 

  • Tabler, R.D., Pomeroy, J.W., and Santana, B.W., 1990. Drifting Snow. In: Cold Regions Hydrology and Hydraulics. Edited by. Ryan, W.C., Crissman, R.D., Tabler, R.D., Pomeroy, J.W., and Santana, B. W., 95–145.

    Google Scholar 

  • Tarboton, D.G., Bras, R.L., and Iturbe, I.R., 1991. On the extraction of channel networks from digital elevation data. In: Terrain Analysis and Distributed Modeling in Hydrology. Edited by. Beven, K.J. and Moore, I.D., 85–104. John Wiley, New York.

    Google Scholar 

  • Vieux, B.E. 1993. DEM resampling and smoothing effects on surface runoff modeling. ASCE, Journal of Computer in Civil Engineering, Special Issue on Geographic Information Analysis, 7(3):310–338.

    Google Scholar 

  • Wang, Q., W. Shi, P.M. Atkinson, and Y. Zhao. 2015. Downscaling MODIS images with area-to-point regression kriging. Remote Sensing of Environment 166: 191–204.

    Article  Google Scholar 

  • Wise, S.M. 1998. The effect of GIS interpolation errors on the use of DEMs in geomorphology. In Landform Monitoring, Modeling and Analysis, ed. S.N. Lane, K.S. Richards, and J.H. Chandler, 139–164. Chichester: Wiley.

    Google Scholar 

  • Wise, S.M. 2000a. Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrological Processes 14(11–12): 1909–1929.

    Article  Google Scholar 

  • Wise, S.M. 2000b. GIS data modelling—lessons from the analysis of DTMs. International Journal of Geographical Information Science 14(4): 313–318.

    Article  Google Scholar 

  • Wise, S.M. 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers and Geosciences 33(10): 1351–1365.

    Article  Google Scholar 

  • Wise, S. 2011. Cross-validation as a means of investigating DEM interpolation error. Computers and Geosciences 37(8): 978–991.

    Article  Google Scholar 

  • Wise, S. 2012. Information entropy as a measure of DEM quality. Computers & Geosciences, Vol. 48, November, pp. 102–110.

    Google Scholar 

  • Wood, E.F., M. Sivapalan, and K. Beven. 1990. Similarity and scale in catchment storm response. Review of Geophysics 28(1): 1–18.

    Article  Google Scholar 

  • Wood, E.F., 1995. Scaling behaviour of hydrological fluxes and variables: empirical studies using a hydrological model and remote sensing data. Hydrological Processes 9(3–4): 331–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baxter E. Vieux .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieux, B.E. (2016). Spatial Variability Measuring Information Content. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0930-7_4

Download citation

Publish with us

Policies and ethics