Skip to main content

Tissue or Cell-Based Techniques

  • Chapter
  • First Online:
Practical Immunodermatology

Abstract

Immunohistochemistry (IHC) is a commonly used method to identify the lineage or histogenesis of tissue cells in paraffin-fixed processed tissue. Various methods are employed to bind a chromogen to a target epitope within the tissue (Table 14.1). The chromogens attach via antibody-binding or protein–ligand binding utilizing avidin–biotin or streptavidin–biotin affinities. Commonly used chromogen methods employ alkaline phosphatase (AP) or horseradish peroxidase (HRP), resulting in a red or brown chromogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Immunohistochemistry

  1. Emoto K, Yamashita S, Okada Y. Mechanisms of heat-induced antigen retrieval: does pH or ionic strength of the solution play a role for refolding antigens? J Histochem Cytochem: Off J Histochem Soc. 2005;53(11):1311–21.

    Article  CAS  Google Scholar 

  2. Shi SR, Imam SA, Young L, Cote RJ, Taylor CR. Antigen retrieval immunohistochemistry under the influence of pH using monoclonal antibodies. J Histochem Cytochem: Off J Histochem Soc. 1995;43(2):193–201.

    Article  CAS  Google Scholar 

  3. Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42(4):405–26.

    Article  CAS  PubMed  Google Scholar 

  4. Williamson JD, Colome MI, Sahin A, Ayala AG, Medeiros LJ. Pagetoid Bowen disease: a report of 2 cases that express cytokeratin 7. Arch Pathol Lab Med. 2000;124(3):427–30.

    CAS  PubMed  Google Scholar 

  5. Clarke LE, Conway AB, Warner NM, Barnwell PN. Sceppa J, Helm KF. Expression of CK7, cam 5.2 and ber-Ep4 in cutaneous squamous cell carcinoma. J Cutan Pathol. 2013;40(7):646–50.

    Article  PubMed  Google Scholar 

  6. Sellheyer K, Krahl D. Ber-EP4 enhances the differential diagnostic accuracy of cytokeratin 7 in pagetoid cutaneous neoplasms. J Cutan Pathol. 2008;35(4):366–72.

    Article  PubMed  Google Scholar 

  7. De Nisi MC, D’Amuri A, Toscano M, Lalinga AV, Pirtoli L, Miracco C. Usefulness of CDX2 in the diagnosis of extramammary Paget disease associated with malignancies of intestinal type. Br J Dermatol. 2005;153(3):677–9.

    Article  PubMed  Google Scholar 

  8. Costache M, Bresch M, Boer A. Desmoplastic trichoepithelioma versus morphoeic basal cell carcinoma: a critical reappraisal of histomorphological and immunohistochemical criteria for differentiation. Histopathology. 2008;52(7):865–76.

    Article  CAS  PubMed  Google Scholar 

  9. Katona TM, Perkins SM, Billings SD. Does the panel of cytokeratin 20 and androgen receptor antibodies differentiate desmoplastic trichoepithelioma from morpheaform/infiltrative basal cell carcinoma? J Cutan Pathol. 2008;35(2):174–9.

    PubMed  Google Scholar 

  10. Sellheyer K, Nelson P. Follicular stem cell marker PHLDA1 (TDAG51) is superior to cytokeratin-20 in differentiating between trichoepithelioma and basal cell carcinoma in small biopsy specimens. J Cutan Pathol. 2011;38(7):542–50.

    Article  PubMed  Google Scholar 

  11. Jensen K, Wilkinson B, Wines N, Kossard S. Procollagen 1 expression in atypical fibroxanthoma and other tumors. J Cutan Pathol. 2004;31(1):57–61.

    Article  PubMed  Google Scholar 

  12. Leinweber B, Hofmann-Wellenhof R, Kaddu S, McCalmont TH. Procollagen 1 and Melan-A expression in desmoplastic melanomas. Am J Dermatopathol. 2009;31(2):173.

    Article  PubMed  Google Scholar 

  13. Fullen DR, Garrisi AJ, Sanders D, Thomas D. Expression of S100A6 protein in a broad spectrum of cutaneous tumors using tissue microarrays. J Cutan Pathol. 2008;35(Suppl s2):28–34.

    Article  PubMed  Google Scholar 

  14. Wieland CN, Dyck R, Weenig RH, Comfere NI. The role of CD10 in distinguishing atypical fibroxanthoma from sarcomatoid (spindle cell) squamous cell carcinoma. J Cutan Pathol. 2011;38(11):884–8.

    Article  PubMed  Google Scholar 

  15. Longacre TA, Egbert BM, Rouse RV. Desmoplastic and spindle-cell malignant melanoma. an immunohistochemical study. Am J Surg Pathol. 1996;20(12):1489–500.

    Article  CAS  PubMed  Google Scholar 

  16. Palla B, Su A, Binder S, Dry S. SOX10 expression distinguishes desmoplastic melanoma from its histologic mimics. Am J Dermatopathol. 2013;35(5):576–81.

    Article  PubMed  Google Scholar 

  17. Folpe AL, Cooper K. Best practices in diagnostic immunohistochemistry: pleomorphic cutaneous spindle cell tumors. Arch Pathol Lab Med. 2007;131(10):1517–24.

    CAS  PubMed  Google Scholar 

  18. Dotto JE, Glusac EJ. p63 is a useful marker for cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol. 2006;33(6):413–7.

    Article  PubMed  Google Scholar 

  19. Kanner WA, Brill LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37(7):744.

    Article  PubMed  Google Scholar 

  20. Sakamoto A, Oda Y, Yamamoto H, et al. Calponin and h-caldesmon expression in atypical fibroxanthoma and superficial leiomyosarcoma. Virchows Arch. 2002;440(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rodig SJ, Cheng J, Wardzala J, et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest. 2012;122(12):4645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicholson SA, McDermott MB, Swanson PE, Wick MR. CD99 and cytokeratin-20 in small-cell and basaloid tumors of the skin. Appl Immunohistochem Mol Morphol. 2000;8(1):37–41.

    CAS  PubMed  Google Scholar 

  23. Rossi S, Orvieto E, Furlanetto A, Laurino L, Ninfo V, Dei Tos AP. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol. 2004;17(5):547–52.

    Article  CAS  PubMed  Google Scholar 

  24. Cribier B, Noacco G, Peltre B, Grosshans E. Stromelysin 3 expression: a useful marker for the differential diagnosis dermatofibroma versus dermatofibrosarcoma protuberans. J Am Acad Dermatol. 2002;46(3):408–13.

    Article  PubMed  Google Scholar 

  25. Mori T, Misago N, Yamamoto O, Toda S, Narisawa Y. Expression of nestin in dermatofibrosarcoma protuberans in comparison to dermatofibroma. J Dermatol. 2008;35(7):419–25.

    Article  PubMed  Google Scholar 

  26. Chisholm C, Cockerell CJ. Functions and uses of immunohistochemical stains in cutaneous infiltrates of hematopoietic origin: a review for the practicing dermatologist. J Cutan Med Surg. 2011;15(2):65–83.

    Article  PubMed  Google Scholar 

  27. Pimpinelli N, Olsen EA, Santucci M, et al; International Society for Cutaneous Lymphoma. Defining early mycosis fungoides. J Am Acad Dermatol. 2005;53(6):1053–63.

    Google Scholar 

  28. Cho-Vega JH, Medeiros LJ, Prieto VG, Vega F. Leukemia cutis. Am J Clin Pathol. 2008;129(1):130–42.

    Article  PubMed  Google Scholar 

  29. Ostler DA, Prieto VG, Reed JA, Deavers MT, Lazar AJ, Ivan D. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol. 2010;23(4):567–73.

    Article  CAS  PubMed  Google Scholar 

  30. Mulay K, White VA, Shah SJ, Honavar SG. Sebaceous carcinoma: clinicopathologic features and diagnostic role of immunohistochemistry (including androgen receptor). Can J Ophthalmol. 2014;49(4):326–32.

    Article  PubMed  Google Scholar 

  31. Chhibber V, Dresser K, Mahalingam M. MSH-6: Extending the reliability of immunohistochemistry as a screening tool in muir-torre syndrome. Mod Pathol. 2008;21(2):159–64.

    CAS  PubMed  Google Scholar 

  32. Mahalingam M, Nguyen LP, Richards JE, Muzikansky A, Hoang MP. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin. Mod Pathol. 2010;23(5):713–9.

    Article  CAS  PubMed  Google Scholar 

  33. Alcaraz I, Cerroni L, Rütten A, Kutzner H, Requena L. Cutaneous metastases from internal malignancies. Am J Dermatopathol. 2012;34(4):347–93.

    Article  PubMed  Google Scholar 

  34. McKay KM, Doyle LA, Lazar AJ, Hornick JL. Expression of ERG, an Ets family transcription factor, distinguishes cutaneous angiosarcoma from histological mimics. Histopathology. 2012;61(5):989–91.

    Article  PubMed  Google Scholar 

  35. Le Huu AR, Jokinen CH, Rubin BP, Mihm MC, Weiss SW, North PE, Dadras SS. Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol. 2010;34(11):1563–73.

    PubMed  Google Scholar 

  36. Trindade F, Tellechea Ó, Torrelo A, Requena L, Colmenero I. Wilms tumor 1 expression in vascular neoplasms and vascular malformations. Am J Dermatopathol. 2011;33(6):569–72.

    Article  PubMed  Google Scholar 

  37. Fernandez AP, Sun Y, Tubbs RR, Goldblum JR, Billings SD. FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol. 2012;39(2):234–42.

    Article  PubMed  Google Scholar 

  38. Kamino H, Tam ST. Immunoperoxidase technique modified by counterstain with azure B as a diagnostic aid in evaluating heavily pigmented melanocytic neoplasms. J Cutan Pathol. 1991;18(6):436–9.

    Article  CAS  PubMed  Google Scholar 

  39. Beltraminelli H, Shabrawi-Caelen LE, Kerl H, Cerroni L. Melan-a-positive “pseudomelanocytic nests”: A pitfall in the histopathologic and immunohistochemical diagnosis of pigmented lesions on sun-damaged skin. Am J Dermatopathol. 2009;31(3):305–8.

    Article  PubMed  Google Scholar 

  40. Ramos-Herberth FI, Karamchandani J, Kim J, Dadras SS. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J Cutan Pathol. 2010;37(9):944–52.

    Article  PubMed  Google Scholar 

  41. Vollmer RT. Use of bayes rule and MIB-1 proliferation index to discriminate spitz nevus from malignant melanoma. Am J Clin Pathol. 2004;122(4):499–505.

    Article  PubMed  Google Scholar 

  42. George E, Polissar NL, Wick M. Immunohistochemical evaluation of p16INK4A, E-cadherin, and cyclin D1 expression in melanoma and spitz tumors. Am J Clin Pathol. 2010;133(3):370–9.

    Article  PubMed  Google Scholar 

  43. Ribe A, McNutt NS. S100A6 protein expression is different in spitz nevi and melanomas. Mod Pathol. 2003;16(5):505–11.

    Article  PubMed  Google Scholar 

  44. Ordóñez NG. Value of SOX10 immunostaining in tumor diagnosis. Adv Anat Pathol. 2013;20(4):275–83.

    Article  PubMed  CAS  Google Scholar 

  45. Rose AE, Christos PJ, Lackaye D, et al. Clinical relevance of detection of lymphovascular invasion in primary melanoma using endothelial markers D2-40 and CD34. Am J Surg Pathol. 2011;35(10):1441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tetzlaff MT, Curry JL, Ivan D, et al. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol. 2013;26(9):1153–60.

    Article  CAS  PubMed  Google Scholar 

  47. Long GV, Wilmott JS, Capper D, et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol. 2013;37(1):61–5.

    Article  PubMed  Google Scholar 

Techniques for Acquisition and Manipulation of Skin Cells

  1. Poumay Y, Boucher F, Degen A, et al. Inhibition of basal cell proliferation during storage of detached cultured epidermis keratinocyte sheet. Acta Derm Venereol. 1991;71(3):195–8.

    CAS  PubMed  Google Scholar 

  2. Zheng-hong D, Xiao-dong S, Wang Y-k, et al. Serum-free primary culture of human skin keratinocyte. J China Med Univ. 2010;39(12):1037–40.

    Google Scholar 

  3. Coolen NA, Verkerk M, Reijnen L, et al. Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplant. 2007;16(6):649–61.

    Article  Google Scholar 

  4. Barlow Y, Pye RJ. Keratinocyte culture: Basic cell culture protocols. Methods Mol Biol. 1997;75:117–29.

    CAS  PubMed  Google Scholar 

  5. Micallef L, Belaubre F, Pinon A, et al. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal hunman keratinocytes. Exp Dermatol. 2009;18(2):143–51.

    Article  CAS  PubMed  Google Scholar 

Isolation of Epidermal Cells

  1. Xu YP, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY). 2012;4(11):742–54.

    Article  CAS  Google Scholar 

  2. James W, Berger T, Elston D. Andrews’ diseases of the skin: clinical dermatology. 10th ed, vol. 8. Saunders, UK; 2005. p. e74019.

    Google Scholar 

  3. Schuler G, et al. Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv Exp Med Biol. 1993;329:243–9.

    Article  CAS  PubMed  Google Scholar 

  4. Merad M, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3(12):1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan DH, Kissenpfennig A, Clausen BE. Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol. 2008;38(9):2369–76.

    Article  CAS  PubMed  Google Scholar 

  6. Chorro L, Geissmann F. Development and homeostasis of ‘resident’ myeloid cells: the case of the Langerhans cell. Trends Immunol. 2010;31(12):438–45.

    Article  CAS  PubMed  Google Scholar 

  7. Gatzka M, et al. Reduction of CD18 promotes expansion of inflammatory gammadelta T cells collaborating with CD4+ T cells in chronic murine psoriasiform dermatitis. J Immunol. 2013;191(11):5477–88.

    Article  CAS  PubMed  Google Scholar 

  8. Ishida M, et al. Primary cutaneous B-cell lymphoma with abundant reactive gamma/delta T-cells within the skin lesion and peripheral blood. Int J Clin Exp Pathol. 2014;7(3):1193–9.

    PubMed  PubMed Central  Google Scholar 

  9. Nakamura K, et al. Differential requirement for CCR4 in the maintenance but not establishment of the invariant Vgamma5(+) dendritic epidermal T-cell pool. PLoS One. 2013;8(9):e74019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valladeau J, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity. 2000;12(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  11. Stoitzner P, et al. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J Invest Dermatol. 2005;125(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  12. Qi R, et al. Histone deacetylase activity is required for skin Langerhans cell maturation and phagocytosis. J Dermatol Sci. 2012;65(2):152–5.

    Article  CAS  PubMed  Google Scholar 

  13. Zaba LC, et al. Normal human dermis contains distinct populations of CD11c + BDCA-1+ dendritic cells and CD163 + FXIIIA+ macrophages. J Clin Invest. 2007;117(9):2517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ebner S, et al. Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int Immunol. 2004;16(6):877–87.

    Article  CAS  PubMed  Google Scholar 

Techniques for Acquisition and Manipulation of Melanocytes

  1. James WD, Berger TG, Elston DM, Odom RB. Andrews’ diseases of the skin: clinical dermatology. Philadelphia: Saunders Elsevier; 2006. p. 961.

    Google Scholar 

  2. Marks JG, Miller JJ, Lookingbill DP, Lookingbill DP. Lookingbill and Marks’ principles of dermatology. Philadelphia: Saunders Elsevier; 2006. p. 331.

    Google Scholar 

  3. Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol. 2008;9:1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stoitzner P, Holzmann S, McLellan AD, Ivarsson L, Stossel H, et al. Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J Invest Dermatol. 2003;120:266–74.

    Article  CAS  PubMed  Google Scholar 

  5. Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A. 2002;99:351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Larregina AT, Falo Jr LD. Changing paradigms in cutaneous immunology: adapting with dendritic cells. J Invest Dermatol. 2005;124:1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, et al. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol. 2008;180:4722–7.

    Article  CAS  PubMed  Google Scholar 

  8. Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Ait-Yahia S, et al. Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol. 2005;125:983–94.

    Article  CAS  PubMed  Google Scholar 

  9. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, et al. Identification of a novel population of Langerin + dendritic cells. J Exp Med. 2007;204:3147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, et al. The dermis contains langerin + dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med. 2007;204:3119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, et al. Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. J Exp Med. 2007;204:3133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, et al. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A. 2009;106:3312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. 2011;35:260–72.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12:114–24.

    CAS  PubMed  PubMed Central  Google Scholar 

Techniques for Acquisition and Manipulation of Melanocytes

  1. Na GY, et al. Isolation and characterization of outer root sheath melanocytes of human hair follicles. Br J Dermatol. 2006;155(5):902–9.

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Malek ZA, et al. Proliferation and propagation of human melanocytes in vitro are affected by donor age and anatomical site. Pigment Cell Res. 1994;7(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  3. Quevedo WC, Szabo G, Virks J. Influence of age and UV on the populations of dopa-positive melanocytes in human skin. J Invest Dermatol. 1969;52(3):287–90.

    Article  CAS  PubMed  Google Scholar 

  4. Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A. 1982;79(6):2018–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halaban R. The regulation of normal melanocyte proliferation. Pigment Cell Res. 2000;13(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  6. Laidlaw GF. Melanoma studies: I. The dopa reaction in general pathology. Am J Pathol. 1932;8(5):477–90. 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang LH, et al. The identification of biological characteristics of cultured melanocytes in vitro. J Clin Dermatol. 2001;30(3):166–7.

    Google Scholar 

  8. Nordlund JJ, et al. The Pigmentary system: physiology and pathophysiology. 2nd ed. Blackwell Publishing; 2006. p. 67, 446.

    Google Scholar 

Techniques for Acquisition and Manipulation of Fibroblasts

  1. Nowak JA, Fuchs E. Isolation and culture of epithelial stem cells. Methods Mol Biol. 2009;482:215–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu G, Zhou Y, Wensong T, et al. Growth and matabolism of human dermal fibroblasts in two-dimensional and three-dimenstional culture systems. J Clin Rehabil Tissue Eng Res. 2007;11(1):74–7.

    Google Scholar 

  3. Liu A, Jin J. Enhanced isolation and culture and authenticate of human fibroblasts. Guangdong Med J. 2008;12(29):1969–70.

    Google Scholar 

  4. De Falco E, Scafetta G, Napoletano C, et al. A standardized laboratory and surgical method for in vitro culture isolation and expansion of primary human Tenon’s fibroblasts. Cell Tissue Bank. 2013;14(2):277–87.

    Google Scholar 

  5. Zhiru G, Kyle D, Stephen L. Isolation and culture of adult epithelial stem cells from human skin. J Vis Exp. 2011;31(49):pii: 2561. doi:10.3791/2561.

    Google Scholar 

  6. Huschtscha LO, Napier CE, Noble JR, et al. Enhanced isolation of fibroblasts from human skin explants. Biotechniques. 2012;53(4):239–44.

    Google Scholar 

Isolation and Manipulation of Resident T Cells in Skin

  1. Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14(10):978–85. doi:10.1038/ni.2680.

    Article  CAS  PubMed  Google Scholar 

  2. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 2009;10(5):524–30. doi:10.1038/ni.1718.

    Article  CAS  PubMed  Google Scholar 

  3. Gatzka M, Hainzl A, Peters T, Singh K, Tasdogan A, Wlaschek M, Scharffetter-Kochanek K. Reduction of CD18 promotes expansion of inflammatory gammadelta T cells collaborating with CD4+ T cells in chronic murine psoriasiform dermatitis. J Immunol. 2013;191(11):5477–88. doi:10.4049/jimmunol.1300976.

    Article  CAS  PubMed  Google Scholar 

  4. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Primary cutaneous B-cell lymphoma with abundant reactive gamma/delta T-cells within the skin lesion and peripheral blood. Int J Clin Exp Pathol. 2014;7(3):1193–9.

    PubMed  PubMed Central  Google Scholar 

  5. Nakamura K, White AJ, Parnell SM, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G. Differential requirement for CCR4 in the maintenance but not establishment of the invariant Vgamma5(+) dendritic epidermal T-cell pool. PLoS One. 2013;8(9):e74019. doi:10.1371/journal.pone.0074019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature. 2012;483(7388):227–31. doi:10.1038/nature10851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macleod AS, Havran WL. Functions of skin-resident gammadelta T cells. Cell Mol Life Sci: CMLS. 2011;68(14):2399–408. doi:10.1007/s00018-011-0702-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol. 2012;13(3):272–82. doi:10.1038/ni.2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Havran WL, Jameson JM. Epidermal T cells and wound healing. J Immunol. 2010;184(10):5423–8. doi:10.4049/jimmunol.0902733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, Rudolph R, Jameson J, Havran WL. A role for human skin-resident T cells in wound healing. J Exp Med. 2009;206(4):743–50. doi:10.1084/jem.20081787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Havran WL, Chien YH, Allison JP. Recognition of self antigens by skin-derived T cells with invariant gamma delta antigen receptors. Science. 1991;252(5011):1430–2.

    Article  CAS  PubMed  Google Scholar 

  12. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC. Regulation of cutaneous malignancy by gammadelta T cells. Science. 2001;294(5542):605–9. doi:10.1126/science.1063916.

    Article  CAS  PubMed  Google Scholar 

  13. Bromley SK, Yan S, Tomura M, Kanagawa O, Luster AD. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J Immunol. 2013;190(3):970–6. doi:10.4049/jimmunol.1202805.

    Article  CAS  PubMed  Google Scholar 

  14. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9.

    Article  CAS  PubMed  Google Scholar 

  15. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med. 2004;199(5):731–6. doi:10.1084/jem.20031482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, Dorosario AA, Chaney KS, Cutler CS, Leboeuf NR, Carter JB, Fisher DC, Kupper TS. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med. 2012;4(117):117ra117. doi:10.1126/scitranslmed.3003008.

    Article  CAS  Google Scholar 

  17. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature. 2011;477(7363):216–9. doi:10.1038/nature10339.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS, Klock A, Jin L, Diem K, Koelle DM, Wald A, Robins H, Corey L. Immune surveillance by CD8alphaalpha + skin-resident T cells in human herpes virus infection. Nature. 2013;497(7450):494–7. doi:10.1038/nature12110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schenkel JM, Fraser KA, Vezys V, Masopust D. Sensing and alarm function of resident memory CD8(+) T cells. Nat Immunol. 2013;14(5):509–13. doi:10.1038/ni.2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84. doi:10.1016/j.immuni.2012.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, Shklovskaya E, Fazekas de St Groth B, Triccas JA, Weninger W. Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J Exp Med. 2011;208(3):505–18. doi:10.1084/jem.20101824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, Yan J. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35(4):596–610. doi:10.1016/j.immuni.2011.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31(2):184–96. doi:10.1016/j.immuni.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk Elston MD or Jang-June Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferringer, T. et al. (2017). Tissue or Cell-Based Techniques. In: Gao, XH., Chen, HD. (eds) Practical Immunodermatology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0902-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0902-4_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0900-0

  • Online ISBN: 978-94-024-0902-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics