Skip to main content

Physiology of Yersinia pestis

  • Chapter
  • First Online:
Yersinia pestis: Retrospective and Perspective

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

This chapter outlines the physiology of Yersinia pestis with emphasis on identifying unique functions required for tissue invasion and acute disease. These activities are opposed to often incompatible processes expressed by very closely related Yersinia pseudotuberculosis, which causes localized gastrointestinal infection. Gain of new information in Y. pestis entailed lateral transfer of plasminogen activator and anti-phagocytic capsular antigen via the plasmids pPCP and pMT, respectively, and derepression of the pigmentation locus facilitating colonization of the flea vector. The ability to survive in austere natural environments became unnecessary following mastery of the closed flea–rodent–flea life cycle permitting concomitant chromosomal degeneration (large and small deletions, additions, inversions, translocations, transposon inserts, and single base substitutions causing nonsense and missense mutations). Consequently, modern Y. pestis lacks a functional pentose–phosphate pathway, glyoxylate bypass, and is unable to directly catabolize L-aspartate and close metabolic derivatives directly via the tricarboxylic acid cycle. The missing gene products accounting for these and numerous other metabolic lesions are now well-established. This group includes formyltetrahydrofolate deformylase (PurU) required for synthesis of glycine. This deficiency is associated with a dramatic ability of Y. pestis to catabolize L-serine, required by the host to initiate methylation of DNA (necessary in turn to initiate successful innate immune processes leading to delayed-type hypersensitivity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, et al. A draft genome of Yersinia pestis from victims of the black death. Nature. 2011;478:506–10. doi:10.1038/nature10549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, et al. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into justinianic plague. PLoS Pathog. 2013;9(5):e1003349. doi:10.1371/journal.ppat.1003349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakajima R, Motin VL, Brubaker RR. Suppression of cytokines in mice by protein A-V antigen fusion peptide and restoration of synthesis by active immunization. Infect Immun. 1995;63(8):3021–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004;101(51):17837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet. 2010;42(12):1140–3. doi:10.1038/ng.1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Devignat R. Varietes de l’espece Pasteurella pestis. Nouvelle hypothese. Bull WHO. 1951;4 SRC – GoogleScholar:247–63.

    Google Scholar 

  7. Brubaker RR. Yersinia pestis. In: Tang Y-W, Liu D, Schwartzman JD, Sussman M, Poxton IR, editors. Molecular medical microbiology, vol. 3. 2nd ed. San Diego: Academic Press/Elsevier; 2015. p. 1845–65.

    Chapter  Google Scholar 

  8. Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies DAL. Dideoxysugars of Pasteurella pseudotuberculosis-specific polysaccharides, and the occurrence of ascarylose. Nature. 1961;191 SRC – GoogleScholar:43–4.

    Google Scholar 

  10. Samuelsson K, Lindberg B, Brubaker RR. Structure of O-specific side chains of lipopolysaccharides from Yersinia pseudotuberculosis. J Bacteriol. 1974;117(3):1010–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Skurnik M, Peippo A, Ervela E. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol. 2000;37:316–30. doi:10.1046/j.1365-2958.2000.01993.x.

    Article  CAS  PubMed  Google Scholar 

  12. Moore RL, Brubaker RR. Hybridization of deoxyribonucleotide sequences of Yersinia enterocolitica and other selected members of Enterobacteriaceae. Int J Syst Bact. 1975;25:336–9.

    Article  Google Scholar 

  13. Chain PSG, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004;101(38):13826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chain PSG, Hu P, Malfatti SA, Radnedge L, Larimer FW, Vergez LM, Worsham P, Chu MC, Andersen GL. Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol. 2006;188(12):4453–63.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001;413(6855):523–7.

    Article  CAS  PubMed  Google Scholar 

  16. Smith T. Parasitism and disease. Princeton: Princeton University Press; 1934.

    Google Scholar 

  17. Goguen JD, Yother J, Straley SC. Genetic analysis of the low calcium response in Yersinia pestis mu d1(Ap lac) insertion mutants. J Bacteriol. 1984;160(3):842–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zahorchak RJ, Charnetzky WT, Little RV, Brubaker RR. Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J Bacteriol. 1979;39:792–9.

    Google Scholar 

  19. Kugelmass NL, Charles C. Biochemistry of blood in health and disease. Springfield: Thomas Inc; 1959.

    Google Scholar 

  20. Higuchi K, Smith JL. Studies on the nutrition and physiology of Pasteurella pestis: VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol. 1961;81 SRC – GoogleScholar:605–8.

    Google Scholar 

  21. Lawton WD, Erdman RL, Surgalla MJ. Biosynthesis and purification of V and W antigen in Pasteurella pestis. J Immunol. 1963;91 SRC – GoogleScholar:179–84.

    Google Scholar 

  22. Straley SC, Bowmer WS. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun. 1986;51:445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brubaker RR, Surgalla MJ. The effect of Ca++ and Mg++ on lysis, growth, and production of virulence antigens by Pasteurella pestis. J Infect Dis. 1964;114:13–25.

    Article  CAS  PubMed  Google Scholar 

  24. Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K. Lambert de Rouvroit C, Sory MP, Vanootegham JC, Michiels T: ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol. 1991;5:1023–34.

    Article  CAS  PubMed  Google Scholar 

  25. Crumpton MY, Davies DAL. An antigenic analysis of Pasteurella pestis by diffusion of antigens and antibodies in agar. Proc R Soc Lond Ser B. 1956;145:109–34.

    Article  Google Scholar 

  26. Francis MS, Lloyd SA, Wolf-Watz H. The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol Microbiol. 2001;42:1075–93.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng LW, Kay O, Schneewind O. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol. 2001;183(18):5293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferracci F, Schubot FD, Waugh DS, Plano GV. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol. 2005;57(4):970–87.

    Article  CAS  PubMed  Google Scholar 

  29. Matson JS, Nilles ML. LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol. 2001;183(17):5082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Motin VL, Nakajima R, Smirnov GB, Brubaker RR. Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun. 1994;62(10):4192–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cornelis GR, Wolf-Watz H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol. 1997;23(5):861–7.

    Article  CAS  PubMed  Google Scholar 

  32. Rosqvist R, Magnusson KE, Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994;13(4):964–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Torruellas J, Jackson MW, Pennock JW, Plano GV. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol. 2005;57(6):1719–33.

    Article  CAS  PubMed  Google Scholar 

  34. Perry RD, Brubaker RR. Transport of Ca2+ by Yersinia pestis. J Bacteriol. 1987;169(10):4861–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Edgren T, Forsberg A, Rosqvist R, Wolf-Watz H. Type III secretion in Yersinia: injectisome or not? PLoS Pathog. 2012;8(5), e1002669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akopyan K, Edgren T, Wang-Edgren H, Rosqvist R, Fahlgren A, Wolf-Watz H, Fallman M. Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci U S A. 2011;108(4):1639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fowler JM, Brubaker RR. Physiological basis of the low calcium response in Yersinia pestis. Infect Immun. 1994;62(12):5234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brubaker RR. Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun. 2005;73(8):4743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes-Prieto A, Barquera B, Juárez O. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS One. 2014;9(5):e96696.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fowler JM, Wulff CR, Straley SC, Brubaker RR. Growth of calcium-blind mutants of Yersinia pestis at 37 degrees C in permissive Ca2+-deficient environments. Microbiology. 2009;155(8):2509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferber DM, Brubaker RR. Plasmids in Yersinia pestis. Infect Immun. 1981;31(2):839–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Buchrieser C, Prentice M, Carniel E. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol. 1998;180(9):2321–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heesemann J. Chromosomal-encoded siderophores are required for mouse virulence of enteropathogenic Yersinia species. FEMS Microbiol Lett. 1987;48:229–33.

    Article  CAS  Google Scholar 

  44. Fetherston JD, Perry RD. The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol. 1994;13(4):697–708.

    Article  CAS  PubMed  Google Scholar 

  45. Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 2011;13(10):808–17. doi:10.1016/j.micinf.2011.1004.1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson S, Burrows TW. The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol. 1956;37:570–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E. Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol. 1998;180(19):5192–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ben-Gurion R, Hertman I. Bacteriocin-like material produced by Pasteurella pestis. J Gen Microbiol. 1958;19:289–97.

    Article  CAS  PubMed  Google Scholar 

  49. Madison RR. Fibrinolytic specificity of Bacillus pestis. Proc Soc Exp Biol Med. 1936;34:301–2.

    Article  CAS  Google Scholar 

  50. Jawetz E, Meyer KF. Studies on plague immunity in experimental animals. II. Some of the immunity mechanism in bubonic plague. J Immunol. 1944;49:15–30.

    Google Scholar 

  51. Hall PJ, Brubaker RR. Pesticin-dependent generation of osmotically stable spheroplast-like structures. J Bacteriol. 1978;136(2):786–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vollmer W, Pilsl H, Hantke K, Höltje JV, Braun V. Pesticin displays muramidase activity. J Bacteriol. 1997;179(5):1580–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Beesley ED, Brubaker RR, Janssen WA, Surgalla MJ. Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol. 1967;94:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brubaker RR, Beesley ED, Surgalla MJ. Pasteurella pestis: role of pesticin I and iron in experimental plague. Science. 1965;149:422–4.

    Article  CAS  PubMed  Google Scholar 

  55. Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science. 1992;258:1004–7.

    Article  CAS  PubMed  Google Scholar 

  56. Korhonen TK, Haiko J, Laakkonen L, Järvinen HM, Westerlund-Wikström B. Fibrinolytic and coagulative activities of Yersinia pestis. Front Cell Infect Microbiol. 2013;3:35. doi:10.3389/fmicb.2015.00063.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garcia E, Worsham P, Bearden S, Malfatti S, Lang D, Larimer F, Lindler L, Chain P. Pestoides F, an atypical Yersinia pestis strain from the former Soviet Union. Adv Exp Med Biol. 2007;603:17–22.

    Article  PubMed  Google Scholar 

  58. Sample AK, Fowler JM, Brubaker RR. Modulation of the low-calcium response in Yersinia pestis via plasmid-plasmid interaction. Microb Pathog. 1987;2(6):443–53.

    Article  CAS  PubMed  Google Scholar 

  59. Sample AK, Brubaker RR. Post-translational regulation of Lcr plasmid-mediated peptides in pesticinogenic Yersinia pestis. Microb Pathog. 1987;3(4):239–48.

    Article  CAS  PubMed  Google Scholar 

  60. Mehigh RJ, Braubaker RR. Major stable peptides of Yersinia pestis synthesized during the low-calcium response. Infect Immun. 1993;61(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Burrows TW. Virulence of Pasteurella pestis. Nature. 1957;179:1246–7.

    Article  CAS  PubMed  Google Scholar 

  62. Winter CC, Cherry WB, Moody MD. An unusual strain of Pasteurella pestis isolated from a fatal case of human plague. Bull WHO. 1960;23:408–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg A. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science. 2002;296(5568):733–5.

    Article  CAS  PubMed  Google Scholar 

  64. Darby C, Hsu JW, Ghori N, Falkow S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature. 2002;417(6886):243–4.

    Article  CAS  PubMed  Google Scholar 

  65. Surgalla MJ, Beesley ED. Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol. 1969;18(5):834–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jackson S, Burrows TW. The virulence enhancing effect of iron on non-pigmented mutants of virulent strains of Pasteurella pestis. Br J Exp Pathol. 1956;37:577–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mehigh RJ, Sample AK, Brubaker RR. Expression of the low calcium response in Yersinia pestis. Microb Pathog. 1989;6(3):203–17.

    Article  CAS  PubMed  Google Scholar 

  68. Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science (New York, NY). 1996;273(5273):367–70.

    Article  CAS  Google Scholar 

  69. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190:783–92.

    Article  PubMed  Google Scholar 

  70. Lillard JW, Bearden SW, Fetherston JD, Perry RD. The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology. 1999;145:197–209.

    Article  CAS  PubMed  Google Scholar 

  71. Abu Khweek A, Fetherston JD, Perry RD. Analysis of HmsH and its role in plague biofilm formation. Microbiology. 2010;156:1424–38. doi:10.1099/mic.1420.036640-036640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79(2):533–51. doi:10.1111/j.1365-2958.

    Article  CAS  PubMed  Google Scholar 

  73. Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun. 2010;78(5):2045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector. Mol Microbiol. 2014;17(4):947–59.

    Google Scholar 

  75. Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997;65(5):1659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brubaker RR. Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol. 1970;98:1404–6.

    Google Scholar 

  77. Pujol C, Grabenstein JP, Perry RD, Bliska JB. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A. 2005;102(36):12909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Torres R, Swift RV, Chim N, Wheatley N, Lan B, Atwood BR, Pujol C, Sankaran B, Bliska JB, Amaro RE, et al. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis. PLoS One. 2011;6(9):e25084. doi:10.1371/journal.pone.0025084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perry RD, Bobbrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics. 2015; (In press). doi:10.1039/C1034MT00332B.

  80. Skurnik M, Wolf-Watz H. Analysis of the yopA gene encoding the Yop1 virulence determinants of Yersinia spp. Mol Microbiol. 1989;3(4):517–29.

    Article  CAS  PubMed  Google Scholar 

  81. Zauberman A, Cohen S, Mamroud E, Flashner Y, Tidhar A, Ber R, Elhanany E, Shafferman A, Velan B. Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis. Infect Immun. 2006;74(6):3239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chouikha I, Hinnebusch BJ. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route. Proc Natl Acad Sci U S A. 2014;111:18709–14. doi:10.1073/pnas.1413209111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hall PJ, Yang GC, Little RV, Brubaker RR. Effect of Ca2+ on morphology and division of Yersinia pestis. Infect Immun. 1974;9(6):1105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsuura M. Structural modifications of bacterial lipopolysaccharide that Facilitate gram-negative bacteria evasion of host innate immunity. Front Immunol. 2013;24(4):109. doi:10.3389/fimmu.

    Google Scholar 

  85. Rebeil R, Ernst RK, Jarrett CO, Adams KN, Miller SI, Hinnebusch BJ. Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol. 2006;188:1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012;37(1):96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Garcia E, Nedialkov YA, Elliott J, Motin VL, Brubaker RR. Molecular characterization of KatY (antigen 5), a thermoregulated chromosomally encoded catalase-peroxidase of Yersinia pestis. J Bacteriol. 1999;181(10):3114–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Han Y, Geng J, Qiu Y, Guo Z, Zhou D, Bi Y, Du Z, Song Y, Wang X, Tan Y, et al. Physiological and regulatory characterization of KatA and KatY in Yersinia pestis. DNA Cell Biol. 2008;27(8):453–62.

    Article  CAS  PubMed  Google Scholar 

  89. Mortlock RP. Gluconate metabolism of Pasteurella pestis. J Bacteriol. 1962;84:53–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mortlock RP, Brubaker RR. Glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis. J Bacteriol. 1962;84(5):1122–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sebbane F, Jarrett CO, Linkenhoker JR, Hinnebusch BJ. Evaluation of the role of constitutive isocitrate lyase activity in Yersinia pestis infection of the flea vector and mammalian host. Infect Immun. 2004;72(12):7334–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dreyfus LA, Brubaker RR. Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol. 1978;136(2):757–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baugh CL, Lanham JW, Surgalla MJ. Effects of bicarbonate on growth of Pasteurella pestis. II. Carbon dioxide fixation into oxalacetate by cell-free extracts. J Bacteriol. 1964;88:553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Englesberg E. The irreversibility of L-methionine synthesis from cysteine in Pasteurella pestis. J Bacteriol. 1952;63:675–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagy PL, Marolewski A, Benkovic SJ, Zalkin H. Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol. 1995;177:1292–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nagy PL, McCorkle GM, Zalkin H. purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis. J Bacteriol. 1993;175:7066–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Une T, Brubaker RR. In vivo comparison of avirulent Vwa and Pgm or Pstr phenotypes of yersiniae. Infect Immun. 1984;43(3):895–900.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Brubaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brubaker, R.R. (2016). Physiology of Yersinia pestis . In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_4

Download citation

Publish with us

Policies and ethics