Skip to main content

Horizontal Gene Transfer

  • Chapter
  • First Online:
Invertebrate Bacteriology
  • 781 Accesses

Abstract

Processes leading to the acquisition of one or more genes from a different species are reviewed for bacteria and metazoans. Evolutionary benefits related to different categories of transferred genes through acquisition and insertion mechanisms are discussed. Gene expression, prevalence and frequency of gene transfer are reviewed, together with the dimensions of insertions and their evolutionary consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    COG = Clusters of orthologous groups, based on genes coding proteins with the same or highly similar functions, proceeding from at least three lineages. See NCBI site http://www.ncbi.nlm.nih.gov/COG/

  2. 2.

    Methylation = a process in which methyl groups (-CH3) are linked to nucleotides in a DNA region, leading to the inactivation of its genes . Part of the epigenetic mechanisms that cells use to downregulate gene expression . See Chap. 1.

  3. 3.

    Pseudogenes = a sequence structurally similar to a gene but not functional, having lost its expression and protein coding capacities.

References

  • Acuña, R., et al. (2012). Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Science, USA, 109, 4197–4202.

    Article  Google Scholar 

  • Aikawa, T., et al. (2009). Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome. Proceedings of the Royal Society B, 276, 3791–3798.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellafiore, S., Shen, Z., Rosso, M. N., Abad, P., Shih, P., & Briggs, S. P. (2008). Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathogens, 4, e1000192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird, D. M. K., Opperman, C. H., & Davies, K. G. (2003). Interactions between bacteria and plant-parasitic nematodes: Now and then. International Journal for Parasitology, 33, 1269–1276.

    Article  CAS  PubMed  Google Scholar 

  • Bird, D. M., Jones, J. T., Opperman, C. H., Kikuchi, T., & Danchin, E. G. J. (2015). Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, 142, S71–S84.

    Article  CAS  PubMed  Google Scholar 

  • Boschetti, C., et al. (2012). Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genetics, 8, e1003035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boto, L. (2014). Horizontal gene transfer in the acquisition of novel traits by metazoans. Proceedings of the Roal Society B, Biological Sciences, 281, 20132450.

    Article  Google Scholar 

  • Brelsfoard, C., et al. (2014). Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS Neglected Tropical Diseases, 8, e2728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brochier-Armanet, C., & Moreira, D. (2015). Horizontal gene transfer in microbial ecosystems. In J. C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand, & T. Sime-Ngando (Eds.), Environmental microbiology: Fundamentals and applications: Microbial ecology (pp. 445–481). Dordrecht: Springer.

    Google Scholar 

  • Chapman, J. A., et al. (2010). The dynamic genome of Hydra. Nature, 464, 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig, J. P., Bekal, S., Hudson, M., Domier, L., Niblack, T., & Lambert, K. N. (2008). Analysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines. Molecular Biology and Evolution, 25, 2085–2098.

    Article  CAS  PubMed  Google Scholar 

  • Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A., & Micklem, G. (2015). Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology, 16, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dagan, T., Artzy-Randrup, Y., & Martin, W. (2008). Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proceedings of the National Academy of Science, USA, 105, 10039–10044.

    Article  CAS  Google Scholar 

  • Danchin, E. G. J., et al. (2010). Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Acadeny of Science, USA, 41, 17651–17656.

    Article  Google Scholar 

  • Degnan, S. M. (2014). Think laterally: Horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts. Frontiers in Microbiology, 5, 638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doolittle, W. F. (1998). You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends in Genetics, 14, 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, W. F. (2009). The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 364, 2221–2228.

    Article  PubMed  Google Scholar 

  • Dunning Hotopp, J. C., et al. (2007). Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science, 317, 1753–1756.

    Article  CAS  PubMed  Google Scholar 

  • Dupeyron, M., Leclercq, S., Cerveau, N., Bouchon, D., & Gilbert, C. (2014). Horizontal transfer of transposons between and within crustaceans and insects. Mobile DNA, 5, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ettensohn, C. A. (2014). Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization. Evolution and Development, 16, 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Haegeman, A., Jones, J. T., & Danchin, E. G. J. (2011). Horizontal gene transfer in nematodes: A catalyst for plant parasitism? Molecular Plant-Microbe Interactions, 24, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, T., et al. (2001). Complete genome sequence of enterohe- morrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Research, 8, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D. J., Macis, A., Reitner, J., & Wörheide, G. (2011). A horizontal gene transfer supported the evolution of an earlymetazoan biomineralization strategy. BMC Evolutionary Biology, 11, 238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, R., Rivera, M. C., & Lake, J. A. (1999). Horizontal gene transfer among genomes: The complexity hypothesis. Proceedings of the National Acadeny of Science, USA, 96, 3801–3806.

    Article  CAS  Google Scholar 

  • Jones, J. T., Furlanetto, C., & Kikuchi, T. (2005). Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology, 7, 641–646.

    Article  CAS  Google Scholar 

  • Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, T., Shibuya, H., & Jones, J. T. (2005). Molecular and biochemical characterization of an endo-beta-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochemical Journal, 389, 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klasson, L., et al. (2014). Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae. BMC Genomics, 15, 1097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V., & Kondrashova, M. N. (2006). Evolution of glyoxylate cycle enzymes in metazoa: Evidence of multiple horizontal transfer events and pseudogene formation. Biology Direct, 1, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koonin, E. V., & Wolf, Y. I. (2008). Genomics of bacteria and archaea: The emerging dynamic view of the prokaryotic world. Nucleic Acids Research, 36, 6688–6719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin, E. V., Makarova, K. S., & Aravind, L. (2001). Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Reviews in Microbiology, 55, 709–742.

    Article  CAS  Google Scholar 

  • Lan, R., & Reeves, P. R. (1996). Gene transfer is a major factor in bacterial evolution. Molecular Biology and Evolution, 13, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Malik, H. S., et al. (2000). Poised for contagion: Evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Research, 10, 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, W. E., Schuster, L. N., Bartelmes, G., Dieterich, C., & Sommer, R. J. (2011). Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evolutionary Biology, 11, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNulty, S. N., et al. (2010). Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS One, 5, e11029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitreva, M., et al. (2009). Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. In M. B. Gogarten et al. (Eds.), Horizontal gene transfer: Genomes in flux (pp. 517–535). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Moran, N. A., & Jarvik, T. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 328, 624–627.

    Article  CAS  PubMed  Google Scholar 

  • Moran, Y., Fredman, D., Szczesny, P., Grynberg, M., & Technau, U. (2012). Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Molecular Biology and Evolution, 29, 2223–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Letelier, A., Olmedo, G., Eguiarte, L. E., Martinez-Castilla, L., & Souza, V. (2011). Parallel evolution and horizontal gene transfer of the pst operon in firmicutes from oligotrophic environments. International Journal of Evolutionary Biology, 2011, 781642.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M. T., Liu, M., & Thomas, T. (2014). Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Molecular Ecology, 23, 1635–1645.

    Article  CAS  PubMed  Google Scholar 

  • Nikoh, N., et al. (2008). Wolbachia genome integrated in an insect chromosome: Evolution and fate of laterally transferred endosymbiont genes. Genome Research, 18, 272–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paganini, J., et al. (2012). Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS One, 7, e50875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson, J., & Blaxter, M. (2003). SimiTri – Visualizing similarity relationships for groups of sequences. Bioinformatics, 19, 390–539.

    Article  CAS  PubMed  Google Scholar 

  • Polz, M. F., Alm, E. J., & Hanage, W. P. (2013). Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends in Genetics, 29, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigbò, P., Wolf, Y. I., & Koonin, E. V. (2010). The tree and net components of prokaryote evolution. Genome Biology and Evolution, 2, 745–756.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, K. M., Sieber, K. B., & Dunning Hotopp, J. C. (2013). A review of bacteria-animal lateral gene transfer may inform our understanding of diseases like cancer. PLoS Genetics, 9, e1003877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rödelsperger, C., & Sommer, R. J. (2011). Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects. BMC Evolutionary Biolology, 11, 239.

    Article  Google Scholar 

  • Rumpho, M. E., et al. (2008). Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proceedings of the National Acadeny of Science, USA, 105, 17867–17871.

    Article  CAS  Google Scholar 

  • Scholl, E. H., & Bird, D. M. (2011). Computational and phylogenetic validation of nematode horizontal gene transfer. BMC Biology, 9, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholl, E. H., Thorne, J. L., McCarter, J. P., & Bird, D. M. (2003). Horizontally transferred genes in plant parasitic nematodes: A high-throughput genomic approach. Genome Biology, 4, R39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3, 711–721.

    Article  CAS  PubMed  Google Scholar 

  • Toft, C., & Andersson, S. G. E. (2010). Evolutionary microbial genomics: Insights into bacterial host adaptation. Nature Reviews Genetics, 11, 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, T., et al. (2012). A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags. BMC Research Notes, 5, 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veronico, P., Jones, J., Di Vito, M., & De Giorgi, C. (2001). Horizontal transfer of a bacterial gene involved in polyglutamate biosynthesis to the plant-parasitic nematode Meloidogyne artiellia. FEBS Letters, 508, 470–474.

    Article  CAS  PubMed  Google Scholar 

  • Wijayawardena, B. K., Minchella, D. J., & DeWoody, J. A. (2013). Hosts, parasites, and horizontal gene transfer. Trends in Parasitology, 29, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, Y. I., & Koonin, E. V. (2013). Genome reduction as the dominant mode of evolution. Bioassays, 35, 829–837.

    Article  Google Scholar 

  • Yuan, J. B., et al. (2013). Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei. BMC Evolutionary Biology, 13, 165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, S., & Gao, B. (2014). Nematode-derived drosomycin-type antifungal peptides provide evidence for plant-to-ecdysozoan horizontal transfer of a disease resistance gene. Nature Communications, 5, 3154.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). Horizontal Gene Transfer. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_8

Download citation

Publish with us

Policies and ethics