Skip to main content

Symbiotic Relationships

  • Chapter
  • First Online:
Invertebrate Bacteriology

Abstract

Different types of symbiotic associations link bacteria and invertebrates. Paths related to evolutionary processes leading to symbiosis are described on the basis of genome data and phylogenetic analyses. Endosymbiotic bacteria and their location in different hosts are reviewed, together with the role of bacteriocytes and other functional adaptations of ecto- and endosymbionts. Main traits related to symbiosis include functional reproductive manipulation, the effects of multiple concomitant symbionts, mechanisms of acquisition and specificity. Different benefits provided by symbiosis improve fitness and/or yield selective advantages in different host types, including nutritional, defense and detoxification mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Candidatus (shortened: Ca.) = the term refers to a described but unculturable bacterium, for which a deposited culture is not available. Since taxonomic rules still require a deposited culture to validate a species, the bacterium is indicated in this way as a “candidate” to species. The possibility to change these rules at the issue of whole genome sequences available has been proposed and is debated.

  2. 2.

    Pleomorphism = occurrence of different cell morphologies in the same bacterial species, due to different nutritional or environmental factors (syn. = polymorphic).

  3. 3.

    Thelitoky = a form of parthenogenesis in which female offsprings are produced from unfertilized eggs.

  4. 4.

    Arrhenotoky = sexual reproduction in which haploid males emerge from unfertilized eggs.

References

  • Adams, A. S., et al. (2013). Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied Environmental Microbiology, 79, 3468–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attardo, G. M., et al. (2008). Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity. Journal of Insect Physiology, 54, 1236–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandi, C., et al. (1995). The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proceedings of the Royal Society B: Biological Sciences, 259, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, P. (2005). Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Reviews in Microbiology, 59, 155–189.

    Article  CAS  Google Scholar 

  • Baumann, P., Moran, N. A., & Baumann, L. (2006). Bacteriocyte-associated endosymbionts of insects. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes. Vol. 1: Symbiotic associations, biotechnology, applied microbiology (pp. 465–496). Dordrecht: Springer.

    Google Scholar 

  • Bian, G., Xu, Y., Lu, P., Xie, Y., & Xi, Z. (2010). The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathogens, 6, e1000833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M., & Goffredi, S. K. (2014). Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Frontiers in Microbiology, 5, 349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordenstein, S. R., & Wernegreen, J. J. (2004). Bacteriophage flux in endosymbionts (Wolbachia): Infection frequency, lateral transfer, and recombination rates. Molecular Biology and Evolution, 21, 1981–1991.

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein, S. R., et al. (2009). Parasitism and mutualism in Wolbachia: What the phylogenomic trees can and cannot say. Molecular Biology and Evolution, 26, 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer, J. A., & Jacobs, G. (1996). Wolbachia: Intracellular manipulators of mite reproduction. Experimental Applied Acarology, 20, 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Bright, M., & Bulgheresi, S. (2010). A complex journey: Transmission of microbial symbionts. Nature Review Microbiology, 8, 218–230.

    Article  CAS  Google Scholar 

  • Buchner, P. (1965). Symbiosis in animals which suck plant juices. In Endosymbiosis of animals with plant microorganisms (pp. 210–432). New York: Interscience.

    Google Scholar 

  • Burke, G. R., Normark, B. B., Favret, C., & Moran, N. A. (2009). Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Applied and Environmental Microbiology, 75, 5328–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, B. J., & Cary, S. C. (2001). Characterization of a novel spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Applied and Environmental Microbiology, 67, 110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, B. J., Stein, J. L., & Cary, S. C. (2003). Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Applied and Environmental Microbiology, 69, 5070–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, B. J., et al. (2009). Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genetics, 5, e1000362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canbäck, B., Tamas, I., & Andersson, S. G. E. (2004). A phylogenomic study of endosymbiotic bacteria. Molecular Biology and Evolution, 21, 1110–1122.

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh, C. M., McKiness, Z. P., Newton, I. L. G., & Stewart, F. J. (2013). Marine chemosynthetic symbioses. In E. Rosenberg et al. (Eds.), The Prokaryotes; Prokaryotic biology and symbiotic associations (pp. 579–607). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Chaves, S., Neto, M., & Tenreiro, R. (2009). Insect-symbiont systems: From complex relationships to biotechnological applications. Biotechnology Journal, 4, 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  • Chelossi, E., Milanese, M., Milano, A., Pronzato, R., & Riccardi, G. (2004). Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). Journal of Experimental Marine Biology and Ecology, 309, 21–33.

    Article  CAS  Google Scholar 

  • Chen, X., Li, S., & Aksoy, S. (1999). Concordant evolution of a symbiont with its host insect species: Molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. Journal of Molecular Evolution, 48, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Childress, J. J., Felbeck, H., & Somero, G. N. (1987). Symbiosis in the deep sea. Scientific American, 256, 115–120.

    Article  Google Scholar 

  • Clark, J. W., & Kambhampati, S. (2003). Phylogenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea: Cryptocercidae), including a description of three new species. Molecular Phylogenetics and Evolution, 26, 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M. E., Veneti, Z., Bourtzis, K., & Karr, T. L. (2002). The distribution and proliferation of the intracellular bacteria Wolbachia during spermatogenesis in Drosophila. Mechanisms of Development, 111, 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Conord, C., et al. (2008). Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: Additional evidence of symbiont replacement in the Dryophthoridae family. Molecular Biology and Evolution, 25, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Cordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27, 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Dale, C., & Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their hosts. Cell, 126, 453–465.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, S. K., & Stahl, D. A. (2008). Selective recruitment of bacteria during embryogenesis of an earthworm. The ISME Journal, 2, 510–518.

    Article  PubMed  Google Scholar 

  • Dedeine, F., et al. (2001). Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences, USA, 98, 6247–6252.

    Article  CAS  Google Scholar 

  • Degnan, P. H., Lazarus, A. B., Brock, C. D., & Wernegreen, J. J. (2004). Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Systematic Biology, 53, 95–110.

    Article  PubMed  Google Scholar 

  • Delaye, L., & Moya, A. (2010). Evolution of reduced prokaryotic genomes and the minimal cell concept: Variations on a theme. BioEssays, 32, 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Dias Passos, F., de Lima Curi Meserani, G., & Gros, O. (2007). Structural and ultrastructural analysis of the gills in the bacterial-bearing species Thyasira falklandica (Bivalvia, Mollusca). Zoomorphology, 126, 153–162.

    Article  Google Scholar 

  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49, 71–92.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, S., Marsland, E., & Rattanadechakul, W. (2002). Mutualistic Wolbachia infection in Aedes albopictus: Accelerating cytoplasmic drive. Genetics, 160, 1087–1094.

    PubMed  PubMed Central  Google Scholar 

  • Douglas, A. (1994). Symbiotic interactions (156 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Douglas, A. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17–37.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, A. E. (2014a). Symbiosis as a general principle in eukaryotic evolution. In P. Keeling, & E. Koonin (Eds.), Origin and evolution of Eukaryotes (Cold Spring Harbor Perspectives in Biology 6, a016113). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Douglas, A. E. (2014b). The molecular basis of bacterial–insect symbiosis. Journal of Molecular Biology, 426, 3830–3837.

    Google Scholar 

  • Douglas, A. E., & Dixon, A. F. G. (1987). The mycetocyte symbiosis of aphids: Variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. Journal of Insect Physiology, 33, 109–113.

    Article  Google Scholar 

  • Dubilier, N., Giere, O., Distel, D. L., & Cavanaugh, C. M. (1995). Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Applied Environmental Microbiology, 61, 2346–2350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Review Microbiology, 6, 725–740.

    Article  CAS  Google Scholar 

  • Dufour, S. C. (2005). Gill anatomy and relationship to chemoautotrophic symbiont presence in the bivalve family Thyasiridae. Biological Bulletin, 208, 200–212.

    Article  PubMed  Google Scholar 

  • Duperron, S., et al. (2006). A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environmental Microbiology, 8, 1441–1447.

    Article  CAS  PubMed  Google Scholar 

  • Duperron, S., Lorion, J., Samadi, S., Gros, O., & Gaill, F. (2009). Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: Diversity, function and evolution. Comptes Rendus Biologies, 332, 298–310.

    Article  PubMed  Google Scholar 

  • Duron, O., et al. (2014). Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology, 23, 2105–2117.

    Article  PubMed  Google Scholar 

  • Ebert, D. (2013). The epidemiology and evolution of symbionts with mixed-mode transmission. Annual Review of Ecology, Evolution, and Systematics, 44, 623–643.

    Article  Google Scholar 

  • Engel, M. S., & Grimaldi, D. A. (2004). New light shed on the oldest insect. Nature, 427, 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Estes, A. M., Hearn, D. J., Bronstein, J. L., & Pierson, E. A. (2009). The olive fly endosymbiont, “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. Applied Environmental Microbiology, 75, 7097–7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldhaar, H., et al. (2007). Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biology, 5, 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferree, P. M., et al. (2005). Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte. PLoS Pathogens, 1, 111–124.

    Article  CAS  Google Scholar 

  • Ferri, E., et al. (2011). New Insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PloS One, 6, e20843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiala-Médioni, A., & Métivier, C. (1986). Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Marine Biology, 90, 215–222.

    Article  Google Scholar 

  • Fiala-Médioni, A., et al. (2002). Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: Evidence for a dual symbiosis. Marine Biology, 141, 1035–1043.

    Article  Google Scholar 

  • Forst, S., Dowds, B., Boemare, N., & Stackebrandt, E. (1997). Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annual Review of Microbiology, 51, 47–72.

    Article  CAS  PubMed  Google Scholar 

  • Frenkiel, L., & Mouëza, M. (1995). Gill ultrastructure and symbiotic bacteria in Codakia orbicularis (Bivalvia, Lucinidae). Zoomorphology, 115, 51–61.

    Article  Google Scholar 

  • Frentiu, F. D., Robinson, J., Young, P. R., McGraw, E. A., & O’Neill, S. L. (2010). Wolbachia mediated resistance to dengue virus infection and death at the cellular level. PloS One, 5, e13398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frost, C. L., Pollock, S. W., Smith, J. E., & Hughes, W. O. H. (2014). Wolbachia in the flesh: Symbiont Intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PloS One, 9, e95122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fry, A., & Rand, D. (2002). Wolbachia interactions that determine Drosophila melanogaster survival. Evolution, 56, 1976–1981.

    Article  PubMed  Google Scholar 

  • Fukatsu, T., Nikoh, N., Kawai, R., & Koga, R. (2000). The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Applied and Environmental Microbiology, 66, 2748–2758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardebrecht, A., et al. (2012). Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal, 6, 766–776.

    Article  CAS  PubMed  Google Scholar 

  • Gehrer, L., & Vorburger, C. (2012). Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 8, 613–615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil, R., et al. (2003). The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proceedings of the National Academy of Sciences, USA, 100, 9388–9393.

    Article  CAS  Google Scholar 

  • Gil-Turnes, M. S., & Fenical, W. (1992). Embryos of Homarus americanus are protected by epibiotic bacteria. Biological Bulletin, 182, 105–108.

    Article  Google Scholar 

  • Gil-Turnes, M. S., Hay, M. E., & Fenical, W. (1989). Symbiotic mariner bacteria chemically defend Crustancean embryos from a pathogenic fungus. Science, 246, 116–118.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Valero, L., et al. (2004). Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. Journal of Bacteriology, 186, 6626–6633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonella, E., et al. (2012). Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiology, 12(Suppl 1), S4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodacre, S. L., & Martin, O. Y. (2013). Endosymbiont infections in spiders. In Spider ecophysiology (pp. 93–105), New York: Springer.

    Google Scholar 

  • Goodacre, S. L., Martin, O. Y., Thomas, C. F., & Hewitt, G. M. (2006). Wolbachia and other endosymbiont infections in spiders. Molecular Ecology, 15, 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Goto, S., Anbutsu, H., & Fukatsu, T. (2006). Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Applied and Environmental Microbiology, 72, 4805–4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb, Y., et al. (2008). Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal, 22, 2591–2599.

    Article  CAS  PubMed  Google Scholar 

  • Graf, J. (2005). Molecular requirements for the colonization of Hirudo medicinalis by Aeromonas veronii. In J. Overmann (Ed.), Progress in molecular and subcellular biology (Molecular Basis of Symbiosis, pp. 291–303). Berlin: Springer.

    Google Scholar 

  • Gros, O., Guibert, J., & Gaill, F. (2007). Gill-symbiosis in mytilidae associated with wood fall environments. Zoomorphology, 126, 163–172.

    Article  Google Scholar 

  • Gruber-Vodicka, H. R., et al. (2011). Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proceedings of the National Academy of Sciences, USA, 108, 12078–12083.

    Article  CAS  Google Scholar 

  • Gruwell, M. E., Morse, G. E., & Normark, B. B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Molecular Phylogenetics and Evolution, 44, 267–280.

    Article  CAS  PubMed  Google Scholar 

  • Guri, M., et al. (2012). Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata. The ISME Journal, 6, 597–609.

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, R. G., & Reid, R. G. B. (1988). Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta, Solemyidae). Marine Biology, 97, 389–401.

    Article  Google Scholar 

  • Haegemann, A., et al. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. International Journal for Parasitology, 39, 1045–1054.

    Article  Google Scholar 

  • Hamilton, P. T., & Perlman, S. J. (2013). Host defense via symbiosis in Drosophila. PLoS Pathogens, 9, e1003808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen, R. D. E., et al. (2011). A worm’s best friend: Recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proceedings of the Royal Society B, 278, 2293–2302.

    Article  PubMed  Google Scholar 

  • Harmer, T. L., et al. (2008). Free-living tube worm endosymbionts found at deep-sea vents. Applied and Environmental Microbiology, 74, 3895–3898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselkorn, T. S., Markow, T. A., & Moran, N. A. (2009). Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Molecular Ecology, 18, 1294–1305.

    Article  CAS  PubMed  Google Scholar 

  • Haygood, M. G., Schmidt, E. W., Davidson, S. K., & Faulkner, D. J. (1999). Microbial symbionts of marine invertebrates: Opportunities for microbial biotechnology. Journal of Molecular Microbiology and Biotechnology, 1, 33–43.

    CAS  PubMed  Google Scholar 

  • Haynes, S., et al. (2003). The diversity of bacteria associated with natural aphid populations. Applied and Environmental Microbiology, 69, 7216–7223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heddi, A., Grenier, A. M., Khatchadourian, C., Charles, H., & Nardon, P. (1999). Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proceedings of the National Academy of Sciences, USA, 96, 6814–6819.

    Article  CAS  Google Scholar 

  • Hedges, L. M., Brownlie, J. C., O'Neill, S. L., & Johnson, K. N. (2008). Wolbachia and virus protection in insects. Science, 322, 702.

    Article  CAS  PubMed  Google Scholar 

  • Henry, L. M., et al. (2013). Horizontally transmitted symbionts and host colonization of ecological niches. Current Biology, 23, 1713–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertig, M., & Wolbach, S. B. (1924). Studies on Rickettsia-like microorganisms in insects. Journal of Medical Research, 44, 329–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., & Werren, J. H. (2008). How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiology Letters, 281, 215–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongoh, Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 68, 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y., & Fukatsu, T. (2010). Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences, USA, 107, 769–774.

    Article  CAS  Google Scholar 

  • Hubert, J., et al. (2012). Detection and identification of species-specific bacteria associated with synanthropic mites. Microbial Ecology, 63, 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, G. D. D., & Jiggins, F. M. (2000). Male-killing bacteria in insects: Mechanisms, incidence and implications. Emerging Infectious Diseases, 6, 329–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husnik, F., et al. (2013). Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell, 153, 1567–1578.

    Article  CAS  PubMed  Google Scholar 

  • Ijichi, N., et al. (2002). Internal spatiotemporal population dynamics of infection with three Wolbachia strains in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Applied and Environmental Microbiology, 68, 4074–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a Drosophila defensive symbiont. Science, 329, 212–215.

    Article  CAS  PubMed  Google Scholar 

  • Johanowicz, D. L., & Hoy, M. A. (1996). Wolbachia in a predator prey system: 16S ribosomal RNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Annals of the Entomological Society of America, 89, 435–441.

    Article  CAS  Google Scholar 

  • Kaltenpoth, M., et al. (2006). ‘Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. International Journal of Systematic and Evolutionary Microbiology, 56, 1403–1411.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, R. L. L., & Dettner, K. (1996). Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia, 107, 293–300.

    Article  Google Scholar 

  • Kelly, M. S., & McKenzie, J. D. (1995). Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north-east Atlantic Ocean. Marine Biology, 123, 741–756.

    Article  Google Scholar 

  • Kennedy, J., Marchesi, J. R., & Dobson, A. D. W. (2007). Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Applied Microbiology and Biotechnology, 75, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, Y., & Fukatsu, T. (2005). Rickettsia infection in natural leech populations. Microbial Ecology, 49, 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J., & Fukatsu, T. (2002). Novel clade of Rickettsia spp. from leeches. Applied and Environmental Microbiology, 68, 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochevar, R. E., Childress, J. J., Fisher, C. R., & Minnich, E. (1992). The methane mussel: Roles of symbiont and host in the metabolic utilization of methane. Marine Biology, 112, 389–401.

    Article  CAS  Google Scholar 

  • Koga, R., Meng, X. Y., Tsuchida, T., & Fukatsu, T. (2012). Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proceedings of the National Academy of Sciences, USA, 109, E1230–E1237.

    Article  CAS  Google Scholar 

  • Koga, R., Bennett, G. M., Cryan, J. R., & Moran, N. A. (2013). Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environmental Microbiology, 15, 2073–2081.

    Article  PubMed  Google Scholar 

  • Kölsch, G., & Pedersen, B. V. (2010). Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts? Molecular Phylogenetics and Evolution, 54, 810–821.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, L. H., Passeri, B., Corona, S., Simoncini, L., & Casiraghi, M. (2003). Immunohistochemical/ immunogold detection and distribution of the endosymbiont Wolbachia of Dirofilaria immitis and Brugia pahangi using a polyclonal antiserum raised against WSP (Wolbachia surface protein). Parasitology Research, 89, 381–386.

    CAS  PubMed  Google Scholar 

  • Kremer, N., et al. (2009). Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathogens, 5, e1000630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krieger, J., Giere, O., & Dubilier, N. (2000). Localization of RubisCO and sulfur in endosymbiotic bacteria of the gutless marine oligochaete Inanidrilus luekodermatus (Anellida). Marine Biology, 137, 239–244.

    Article  CAS  Google Scholar 

  • Lalzar, I., Friedmann, Y., & Gottlieb, Y. (2014). Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environmental Microbiology. doi:10.1111/1462-2920.12455.

    PubMed  Google Scholar 

  • Lamelas, A., et al. (2008). Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in Aphid species of the subfamily Lachninae. Applied and Environmental Microbiology, 74, 4236–4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landmann, F., Foster, J. M., Slatko, B., & Sullivan, W. (2010). Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Neglected Tropical Diseases, 4, e758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, O. O., Chui, P. Y., Wong, Y. H., Pawlik, J. R., & Qian, P. Y. (2009). Evidence for vertical transmission of bacterial symbionts from adult to embryo in the caribbean sponge Svenzea zeai. Applied and Environmental Microbiology, 75, 6147–6156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leisch, N., et al. (2011). Microanatomy of the trophosome region of Paracatenula cf. polyhymnia (Catenulida, Platyhelminthes) and its intracellular symbionts. Zoomorphology, 130, 261–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim-Fong, G. E., Regali, L. A., & Haygood, M. G. (2008). Evolutionary relationships of “Candidatus Endobugula” bacterial symbionts and their Bugula bryozoan hosts. Applied Environmental Microbiology, 74, 3605–3609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist, N., Barber, P. H., & Weisz, J. B. (2005). Episymbiotic microbes as food and defence for marine isopods: Unique symbioses in a hostile environment. Proceedings of the Royal Society B, 272, 1209–1216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo, N., et al. (2007). Taxonomic status of the intracellular bacterium Wolbachia pipientis. International Journal of Systematic and Evolutionary Microbiology, 57, 654–657.

    Article  CAS  PubMed  Google Scholar 

  • Lund, M. B., Kjeldsen, K. U., & Schramm, A. (2014). The earthworm—Verminephrobacter symbiosis: An emerging experimental system to study extracellular symbiosis. Frontiers in Microbiology, 5, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maekawa, K., Park, Y. C., & Lo, N. (2005). Phylogeny of endosymbiont bacteria harbored by the woodroach Cryptocercus spp. (Cryptocercidae: Blattaria): Molecular clock evidence for a late Cretaceous – Early Tertiary split of Asian and American lineages. Molecular Phylogenetics and Evolution, 36, 728–733.

    Article  PubMed  Google Scholar 

  • Maltz, M. A., et al. (2014). Metagenomic analysis of the medicinal leech gut microbiota. Frontiers in Microbiology, 5, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, O. Y., & Goodacre, S. L. (2009). Widespread infections by the bacterial endosymbiont Cardinium in arachnids. The Journal of Arachnology, 37, 106–108.

    Article  Google Scholar 

  • Martin, J. W., & Haney, T. A. (2005). Decapod crustaceans from hydrothermal vents and cold seeps: A review through 2005. Zoological Journal of the Linnean Society, 145, 445–522.

    Article  Google Scholar 

  • Marubayashi, J. M., et al. (2014). Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PloS One, 9, e108363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzon, L., et al. (2010). Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Molecular Phylogenetics and Evolution, 56, 312–326.

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.

    CAS  Google Scholar 

  • McCutcheon, J. P., & von Dohlen, C. D. (2011). An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Current Biology, 21, 1366–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFall-Ngai, M. J. (1999). Consequences of evolving with bacterial symbionts: Lessons from the squid-vibrio associations. Annual Review of Ecology and Systematics, 30, 235–256.

    Article  Google Scholar 

  • McFall-Ngai, M., & Montgomery, M. K. (1990). The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda:Sepiolidae). Biological Bulletin, 179, 332–339.

    Article  Google Scholar 

  • McKiness, Z. P., McMullin, E. R., Fisher, C. R., & Cavanaugh, C. M. (2005). A new bathymiodoline mussel symbiosis at the Juan de Fuca hydrothermal vents. Marine Biology, 148, 109–116.

    Article  Google Scholar 

  • Min, K. T., & Benzer, S. (1997). Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proceedings of the National Academy of Sciences, USA, 94, 10792–10796.

    Article  CAS  Google Scholar 

  • Mitsuhashi, W., Saiki, T., Wei, W., Kawakita, H., & Sato, M. (2002). Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Molecular Biology, 11, 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27, 189–195.

    Article  Google Scholar 

  • Moran, N. A. (2002). Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108, 583–586.

    Article  CAS  PubMed  Google Scholar 

  • Moran, N. A., & Wernegreen, J. J. (2000). Lifestyle evolution in symbiotic bacteria: Insights from genomics. TREE, 15, 321–326.

    PubMed  Google Scholar 

  • Moran, N. A., & Yun, Y. (2015). Experimental replacement of an obligate insect symbiont. Proceedings of the National Academy of Sciences, USA, 112, 2093–2096.

    Article  CAS  Google Scholar 

  • Moran, N. A., Tran, P., & Gerardo, N. M. (2005). Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology, 71, 8802–8810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira, L. A., et al. (2009). A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell, 139, 1268–1278.

    Article  PubMed  Google Scholar 

  • Morse, S. F., Dick, C. W., Patterson, B. D., & Dittmar, K. (2012). Some like it hot: Evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophiliinae). Applied and Environmental Microbiology, 78, 8639–8649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, W. E. G., et al. (2004). Sustainable production of bioactive compounds by sponges – Cell culture and gene cluster approach: A review. Marine Biotechnology, 6, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Musat, N., Giere, O., Gieseke, A., Thiermann, F., Amann, R., & Dubilier, N. (2007). Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environmental Microbiology, 9, 1345–1353.

    Article  CAS  PubMed  Google Scholar 

  • Nakabachi, A., et al. (2005). Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proceedings of the National Academy of Sciences, USA, 102, 5477–5482.

    Article  CAS  Google Scholar 

  • Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y., & Kudo, T. (2003). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Applied and Environmental Microbiology, 69, 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noel, G. R., & Atibalentja, N. (2006). ‘Candidatus Paenicardinium endonii’, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. International Journal of Systematic and Evolutionary Microbiology, 56, 1697–1702.

    Article  CAS  PubMed  Google Scholar 

  • Nováková, E., et al. (2013). Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Molecular Phylogenetics and Evolution, 68, 42–54.

    Article  PubMed  Google Scholar 

  • Nussbaumer, A. D., Bright, M., Baranyi, C., Beisser, C. J., & Ott, J. A. (2004). Attachment mechanism in a highly specific association between ectosymbiotic bacteria and marine nematodes. Aquatic Microbial Ecology, 34, 239–246.

    Article  Google Scholar 

  • Oliver, K. M., Russell, J. A., Moran, N. A., & Hunter, M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences, USA, 100, 803–1807.

    Article  CAS  Google Scholar 

  • Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences, USA, 102, 12795–12800.

    Article  CAS  Google Scholar 

  • Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325, 992–994.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55, 247–266.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, S. E., Iturbe-Ormaetxe, I., Brownlie, J. C., O’Neill, S. L., & Johnson, K. N. (2012). Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Applied and Environmental Microbiology, 78, 6922–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, B. J., Spragg, C. J., Altincicek, B., & Gerardo, N. M. (2013). Symbiont-mediated protection against fungal pathogens in pea aphids: A role for pathogen specificity? Applied Environmental Microbiology, 79, 2455–2458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrella, G., Nappo, A. G., Manco, E., Greco, B., & Giorgini, M. (2014). Invasion of the Q2 mitochondrial variant of Mediterranean Bemisia tabaci in southern Italy: Possible role of bacterial endosymbionts. Pest Management Science, 70, 1514–1523.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Brocal, V., et al. (2006). A small microbial genome: The end of a long symbiotic relationship? Science, 314, 312–313.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, S. L., Budinoff, R. B., & Siddall, M. E. (2005). New gammaproteobacteria associated with blood-feeding leeches and a broad phylogenetic analysis of leech endosymbionts. Applied and Environmental Microbiology, 71, 5219–5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlman, S. J., Kelly, S. E., Zchori-Fein, E., & Hunter, M. S. (2006). Cytoplasmic incompatibility and multiple symbiont infection in the ash whiteXy parasitoid, Encarsia inaron. Biological Control, 39, 474–480.

    Article  Google Scholar 

  • Petersen, J. M., et al. (2010). Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environmental Microbiology, 12, 2204–2218.

    CAS  PubMed  Google Scholar 

  • Petersen, J. M., et al. (2011). Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 476, 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Pfarr, K., Foster, J., Slatko, B., Hoerauf, A., & Eisen, J. A. (2007). On the taxonomic status of the intracellular bacterium Wolbachia pipientis: Should this species name include the intracellular bacteria of filarial nematodes? International Journal of Systematic and Evolutionary Microbiology, 57, 1677–1678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piel, J., Hofer, I., & Hui, D. (2004). Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. Journal of Bacteriology, 186, 1280–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plantard, O., et al. (2012). Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the Hymenoptera endoparasitoid Ixodiphagus hookeri. PloS One, 7, e30692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polz, M. F., & Cavanaugh, C. M. (1996). The ecology of ectosymbiosis at a Mid-Atlantic Ridge hydrothermal vent site. In F. Ublein, J. Ott, & M. Stachowtisch (Eds), Deep-sea and extreme shallow-water habitats: Affinities and adaptations (Biosystematics and ecology series, Vol. 11, pp. 337–352). Wien: Österreichische Akademie der Wissenschaften.

    Google Scholar 

  • Ransom-Jones, E., Jones, D. L., McCarthy, A. J., & McDonald, J. E. (2012). The Fibrobacteres: An important Phylum of cellulose-degrading bacteria. Microbial Ecology, 63, 267–281.

    Article  CAS  PubMed  Google Scholar 

  • Rigaud, T., Pennings, P. S., & Juchault, P. (2001). Wolbachia bacteria effects after experimental interspecific transfers in terrestrial isopods. Journal of Invertebrate Pathology, 77, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Rio, R. V. M., Lefevre, C., Heddi, A., & Aksoy, S. (2003). Comparative genomics of insect-symbiotic bacteria: Influence of host environment on microbial genome composition. Applied and Environmental Microbiology, 69, 6825–6832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robidart, J. C., et al. (2008). Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environmental Microbiology, 10, 727–737.

    Article  CAS  PubMed  Google Scholar 

  • Rokas, A. (2000). Wolbachia as a speciation agent. Tree, 15, 45–46.

    Google Scholar 

  • Rousset, F., & Solignac, M. (1995). Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences, USA, 92, 6389–6393.

    Article  CAS  Google Scholar 

  • Russell, J. E., & Stouthamer, R. (2011). The genetics and evolution of obligate reproductive parasitism in Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia. Heredity, 106, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. A., Moreau, C. S., Goldman-Huertas, B., Fujiwara, M., Lohman, D. J., & Pierce, N. E. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences, USA, 106, 21236–21241.

    Article  CAS  Google Scholar 

  • Sachs, J. L., Skophammer, R. G., & Regus, J. U. (2011). Evolutionary transitions in bacterial symbiosis. Proceedings of the National Academy of Sciences, USA, 108, 10800–10807.

    Article  CAS  Google Scholar 

  • Saha, S., et al. (2012). Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PloS One, 7(11), e50067. doi:10.1371/journal.pone.0050067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salathé, R. M., & Vrijenhoek, R. C. (2012). Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae). BMC Evolutionary Biology, 12, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saridaki, A., & Bourtzis, K. (2010). Wolbachia: More than just a bug in insects genitals. Current Opinion in Microbiology, 13, 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, C., Stackebrandt, E., Gadau, J., Hölldobler, B., & Gross, R. (2000). Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: Proposal of the new taxon Candidatus Blochmannia gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  • Scarborough, C. L., Ferrari, J., & Godfray, H. C. J. (2005). Bacterial endosymbiont increases aphid inclusive fitness after pathogen attack. Science, 310, 1781.

    Article  CAS  PubMed  Google Scholar 

  • Schuett, C., Doepke, H., Gratho, A., & Gedde, M. (2007). Bacterial aggregates in the tentacles of the sea anemone Metridium senile. Helgoland Marine Research, 61, 211–216.

    Article  Google Scholar 

  • Sebastien, A., Gruber, M. A. M., & Lester, P. J. (2012). Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insectes Sociaux, 59, 33–40.

    Article  Google Scholar 

  • Shigenobu, S., & Wilson, A. C. C. (2011). Genomic revelations of a mutualism: The pea aphid and its obligate bacterial symbiont. Cellular and Molecular Life Sciences, 68, 1297–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddall, M. E., Perkins, S. L., & Desser, S. S. (2004). Leech mycetomes endosymbionts are a new lineage of alphaproteobacteria related to the Rhizobiaceae. Molecular Phylogenetics and Evolution, 30, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Six, D. L. (2013). The bark beetle holobiont: Why microbes matter. Journal of Chemical Ecology, 39, 989–1002.

    Article  CAS  PubMed  Google Scholar 

  • Skaljac, M., Zanic, K., Goreta Ban, S., Kontsedalov, S., & Ghanim, M. (2010). Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology, 10, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steindler, L., Huchon, D., Avni, A., & Ilan, M. (2005). 16S rRNA pylogeny of sponge-associated Cyanobacteria. Applied and Environmental Microbiology, 71, 4127–4131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, F. J., & Cavanaugh, C. M. (2006). Symbiosis of thioautotrophic bacteria with Riftia pachyptila. In J. Overmann, & W. E. G. Müller (Eds.), Molecular basis of symbiosis (Progress in molecular and subcellular biology series, pp. 197–225). Berlin: Springer.

    Google Scholar 

  • Stingl, U., Radek, R., Yang, H., & Brune, A. (2005). Endomicrobia: Cytoplasmic symbionts of termite gut protozoa form a separate Phylum of Prokaryotes. Applied and Environmental Microbiology, 71, 1473–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll, S., Feldhaar, H., Fraunholz, M. J., & Gross, R. (2010). Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiology, 10, 308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stouthamer, R. (1993). The use of sexual versus asexual wasps in biological control. Entomophaga, 38, 3–6.

    Article  Google Scholar 

  • Stouthamer, R., Luck, R. F., & Hamilton, W. D. (1990). Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences, USA, 87, 2424–2427.

    Article  CAS  Google Scholar 

  • Szafranski, K. M., Gaudron, S. M., & Duperron, S. (2014). Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae). Naturwissenschaften, 101, 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Tamas, I., et al. (2002). 50 million years of genomic stasis in endosymbiotic bacteria. Science, 296, 2376–2379.

    Article  CAS  PubMed  Google Scholar 

  • Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P., & Werren, J. H. (2007). Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: Mainland-island model. PloS One, 2, e701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thacker, R. W. (2005). Impacts of shading on sponge-Cyanobacteria symbioses: A comparison between host-specific and generalist associations. Integrative and Comparative Biology, 45, 369–376.

    Article  PubMed  Google Scholar 

  • Thao, M. L., & Baumann, P. (2004a). Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology, 48, 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Thao, M. L., & Baumann, P. (2004b). Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Applied Environmental Microbiology, 70, 3401–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao, M. L., et al. (2000). Secondary endosymbionts of psyllids have been acquired multiple times. Current Microbiology, 41, 300–304.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, C. L., Vier, R., Mikaelyan, A., Wienemann, T., & Brune, A. (2012). ‘Candidatus Arthromitus’ revised: Segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environmental Microbiology, 14, 1454–1465.

    Article  CAS  PubMed  Google Scholar 

  • Thurber, A. R., Jones, W. J., & Schnabel, K. (2011). Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab. PloS One, 6(11), e26243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toenshoff, E. R., et al. (2012). Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). The ISME Journal, 6, 384–396.

    Article  CAS  PubMed  Google Scholar 

  • Tsagkarakou, A., Guillemaud, T., Rousset, F., & Navajas, M. (1996). Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain. Insect Molecular Biology, 5, 217–221.

    Article  CAS  PubMed  Google Scholar 

  • Urban, J. M., & Cryan, J. R. (2012). Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evolutionary Biology, 12, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacelet, J., & Donadey, C. (1977). Electron microscope study of the association between some sponges and bacteria. Journal of Experimental Marine Biology and Ecology, 30, 301–314.

    Article  Google Scholar 

  • van Borm, S., Wenseleers, T., Billen, J., & Boomsma, J. J. (2003). Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants. Molecular Phylogenetics and Evolution, 26, 102–109.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, T. T. M., Willems, A., Gillis, M., & Coomans, A. (2000). Occurrence of novel Verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum group species (Nematoda, Longidoridae). International Journal of Systematic and Evolutionary Microbiology, 50, 2197–2205.

    Article  PubMed  Google Scholar 

  • Vavre, F., Girin, C., & Bouletreau, M. (1999). Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Molecular Biology and Evolution, 8, 67–72.

    CAS  Google Scholar 

  • Veneti, Z., Clark, M. E., Karr, T. L., Savakis, C., & Bourtzis, K. (2004). Heads or tails: Host parasite interactions in the Drosophila-Wolbachia system. Applied and Environmental Microbiology, 70, 5366–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visick, K. L., & Mcfall-Ngai, M. J. (2000). An exclusive contract: Specificity in the Vibrio fischeri-Euprymna scolopes partnership. Journal of Bacteriology, 182, 1779–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Dohlen, C. D., Kohler, S., Alsop, S. T., & McManus, W. R. (2001). Mealybug b-proteobacterial endosymbionts contain g-proteobacterial symbionts. Nature, 412, 433–436.

    Article  Google Scholar 

  • Vorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6, 109–111.

    Article  PubMed  Google Scholar 

  • Wagner, M., & Horn, M. (2006). The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Current Opinion in Biotechnology, 17, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Walker, T., et al. (2011). The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476, 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Brune, A., & Zimmer, M. (2007). Bacterial symbionts in the hepatopancreas of isopods: Diversity and environmental transmission. FEMS Microbiology Ecology, 61, 141–152.

    Google Scholar 

  • Wang, J. B., & Cheung, W. W. K. (1997). Electron microscopy studies on the a-bacteroids in the fat bodies of the lantern bug Pyrops candelaria Linn (Homoptera: Fulgoridae). Parasitology Research, 83, 499–503.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. B., & Cheung, W. W. K. (1998). Multiple bacteroids in the bacteriome of the lantern bug Pyrops candelaria Linn. (Homoptera: Fulgoridae). Parasitology Research, 84, 741–745.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., et al. (2013). Molecular cross-talk between sponge host and associated microbes. Phytochemistry Reviews, 12, 369–390.

    Article  CAS  Google Scholar 

  • Webster, N. (2014). Cooperation, communication, and co-evolution: Grand challenges in microbial symbiosis research. Frontiers in Microbiology. doi:10.3389/fmicb.2014.00164

  • Webster, N. S., et al. (2010). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 12, 2070–2082.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T., & Hoffmann, A. A. (2007). From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biology, 5, 997–1005.

    Article  CAS  Google Scholar 

  • Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: Master manipulators of invertebrate biology. Nature Review Microbiology, 6, 741–751.

    Article  CAS  Google Scholar 

  • White, J. A., Kelly, S. E., Cockburn, S. N., Perlman, S. J., & Hunter, M. S. (2011). Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity, 106, 585–591.

    Article  CAS  PubMed  Google Scholar 

  • White, J. A., Giorgini, M., Strand, M. R., & Pennacchio, F. (2013). Arthropod endosymbiosis and evolution. In A. Minelli et al. (Eds.), Arthropod biology and evolution (pp. 441–477). Berlin: Springer.

    Chapter  Google Scholar 

  • Wilkinson, C. R. (1984). Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proceedings of the Royal Society of London B, 220, 509–517.

    Article  Google Scholar 

  • Wilkinson, D. (2001). At cross purposes. Nature, 412, 485.

    Article  CAS  PubMed  Google Scholar 

  • Williams, L. E., & Wernegreen, J. J. (2010). Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics, 11, 687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won, Y. J., Jones, W. J., & Vrijenhoek, R. C. (2008). Absence of cospeciation between deepsea mytilids and their thiotrophic endosymbionts. Journal of Shellfish Research, 27, 129–138.

    Article  Google Scholar 

  • Woyke, T., et al. (2006). Symbiosis insights through metagenomic analysis of a microbial consortium. Nature, 443, 950–955.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J., Vilchez, I., & Mateos, M. (2010). Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PloS One, 5, e12149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin, L., Nordin, J. H., Lucches, P., & Giorgi, F. (2001). Cysteine proprotease colocalizes with vitellogenin in compound granules of the cockroach fat body. Cell and Tissue Research, 304, 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Zbinden, M., et al. (2008). New insights on the metabolic diversity among the epibiotic microbial community of the hydrothermal shrimp Rimicaris exoculata. Journal of Experimental Marine Biology and Ecology, 359, 131–140.

    Article  Google Scholar 

  • Zchori-Fein, E., Roush, R. T., & Hunter, M. S. (1992). Male production by antibiotic treatment in Encarsia formosa (Hymenoptera: Aphelinidae), an asexual species. Experientia, 48, 102–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). Symbiotic Relationships. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_3

Download citation

Publish with us

Policies and ethics