Skip to main content

The Bacterial Cell

  • Chapter
  • First Online:
Book cover Invertebrate Bacteriology
  • 761 Accesses

Abstract

General concepts and basic informations, with data on structural components and functionning of the bacterial cell are provided, including descriptions of the cell wall, the secretion systems and the cytoskeleton organization. Basic informations about the functionning and organization of the chromosome and plasmids are shown, together with mechanisms of genetic recombination and DNA methylation. Other structural components of the bacterial cell like flagella and pili are also shown. Quorum sensing and functional processes like CRISPR systems involved in adaptation and metabolism are discussed, with basic concepts and data concerning bacterial identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AFM = a tridimensional scan of a sample surface performed by measuring the vertical deflection induced by the scanned surface on a thin cantilever helding a very sharp tip probe. The vertical movements of the scanning probe , due to repulsive or attractive interactions with the substrate, are detected as intensity changes of a laser beam deflected by the cantilever. Either the force of deflection or the vertical probe displacement are then used to digitally reconstruct the sample surface topography.

  2. 2.

    Chaperon, chaperonin = proteins assisting the folding or unfolding of other proteins.

  3. 3.

    Bacteriophages, phages = a large group of specific bacteria-parasitic viruses.

  4. 4.

    Nucleoid = an irregular cell region, deprived of membrane , in which most protein-coated genetic material is compacted.

  5. 5.

    GATC = a sequence domain with the four DNA nucleotides guanine, adenine , thymine and cytosine .

  6. 6.

    Biofilm = a sessile community of bacteria adhering to each other and to a surface.

  7. 7.

    CRISPR = clustered, regularly interspaced, short palindromic repeat.

  8. 8.

    Introns = non-coding nucleotidic regions inserted mostly within eukaryotic genes . During gene expression they are not trascribed nor translated into aminoacid sequences .

References

  • Abdallah, A. M., et al. (2007). Type VII secretion–mycobacteria show the way. Nature Reviews Microbiology, 5, 883–891.

    Article  CAS  PubMed  Google Scholar 

  • Amitai, G., & Sorek, R. (2016). CRISPR–Cas adaptation: Insights into the mechanism of action. Nature Reviews Microbiology, 14, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Antunes, L. C. M., Ferreira, R. B. R., Buckner, M. M. C., & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. Microbiology, 156, 2271–2282.

    Article  CAS  PubMed  Google Scholar 

  • Ausmees, N., Kuhn, J. R., & Jacobs-Wagner, C. (2003). The bacterial cytoskeleton: An intermediate filament-like function in cell shape. Cell, 115, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Bartesaghi, A., et al. (2015). 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science, 348, 1147–1151.

    Article  CAS  PubMed  Google Scholar 

  • Bentley, S. D., & Parkhill, J. (2004). Comparative genomic structure of prokaryotes. Annual Review of Genetics, 38, 771–791.

    Article  CAS  PubMed  Google Scholar 

  • Bigot, S., Sivanathan, V., Possoz, C., Barre, F. X., & Cornet, F. (2007). FtsK, a literate chromosome segregation machine. Molecular Microbiology, 64, 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  • Bladergroen, M. R., Badelt, K., & Spaink, H. P. (2003). Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Molecular Plant-Microbe Interactions, 16, 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Boettcher, K. J., & Ruby, E. G. (1995). Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. Journal of Bacteriology, 177, 1053–1058.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boone, D. R., Castenholz, R. W., & Garrity, G. M. (Eds.). (2001). The Archaea and the deeply branching and phototrophic bacteria (Bergey’s manual of systematic bacteriology, Vol. I). New York: Springer, 721 pp.

    Google Scholar 

  • Braaten, B. A., Nou, X., Kaltenbach, L. S., & Low, D. A. (1994). Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell, 76, 577–588.

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet, C., & Moreira, D. (2015). Horizontal gene transfer in microbial ecosystems. In J. C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand, & T. Sime-Ngando (Eds.), Environmental microbiology: Fundamentals and applications: Microbial ecology (pp. 445–481). Dordrecht: Springer.

    Google Scholar 

  • Cabeen, M. T., & Jacobs-Wagner, C. (2007). Skin and bones: The bacterial cytoskeleton, cell wall, and cell morphogenesis. The Journal of Cell Biology, 179, 381–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, T. B., & Saier, M. H. (2003). The general protein secretory pathway: Phylogenetic analyses leading to evolutionary conclusions. Biochimica et Biophysica Acta, 1609, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Casadesús, J., & Low, D. (2006). Epigenetic gene regulation in the bacterial world. Microbiology and Molecular Biology Reviews, 70, 830–856.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69, 330–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie, P. J., & Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems (review). Molecular Membrane Biology, 22, 51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chubukov, V., Gerosa, L., Kochanowski, K., & Sauer, U. (2014). Coordination of microbial metabolism. Nature Reviews Microbiology, 12, 327–340.

    Article  CAS  PubMed  Google Scholar 

  • Cianciotto, N. P. (2005). Type II secretion: A protein secretion system for all seasons. Trends in Microbiology, 13, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17, 840–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, D. L., Lahue, R. S., & Modrich, P. (1993). Methyl-directed mismatch repair is bidirectional. Journal of Biological Chemistry, 268, 11823–11829.

    CAS  PubMed  Google Scholar 

  • Cornelis, G. R. (2006). The type III secretion injectisome. Nature Review Microbiology, 4, 811–825.

    Article  CAS  Google Scholar 

  • Dale, C., Young, S. A., Haydon, D. T., & Welburn, S. C. (2001). The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Science USA, 98, 1883–1888.

    Article  CAS  Google Scholar 

  • Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta, 1694, 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Diggle, S. P., Gardner, A., West, S. A., & Griffin, A. S. (2007). Evolutionary theory of bacterial quorum sensing: When is a signal not a signal? Philosophical Transactions of the Royal Society B, 362, 1241–1249.

    Google Scholar 

  • Dobretsov, S., Teplitski, M., & Paul, V. (2009). Mini-review: Quorum sensing in the marine environment and its relationship to biofouling. Biofouling, 25, 413–427.

    Article  CAS  PubMed  Google Scholar 

  • Downs, D. M. (2006). Understanding microbial metabolism. Annual Review of Microbiology, 60, 533–559.

    Article  CAS  PubMed  Google Scholar 

  • Dumonceaux, T. J., et al. (2006). Enumeration of specific bacterial populations in complex intestinal communities using quantitative PCR based on the chaperonin-60 target. Journal of Microbiological Methods, 64, 46–62.

    Article  CAS  PubMed  Google Scholar 

  • Dworkin, M. (Ed.). (2006). The prokaryotes (3rd ed., Vol. 7). New York: Springer.

    Google Scholar 

  • Eberhard, A., et al. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20, 2444–2449.

    Article  CAS  PubMed  Google Scholar 

  • Fagan, R. P., & Fairweather, N. F. (2014). Biogenesis and functions of bacterial S-layers. Nature Reviews Microbiology, 12, 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, V., et al. (2006). Agr interference between clinical Staphylococcus aureus strains in an insect model of virulence. Journal of Bacteriology, 188, 7686–7688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galan, J. E., & Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444, 567–573.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, W. R., Hodgkinson, J. T., Bowden, S., Welch, M., & Spring, D. R. (2012). Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends in Microbiology, 20, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Goh, S. H., et al. (1996). HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. Journal of Clinical Microbiology, 34, 818–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf, J., & Ruby, E. G. (2000). Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: Defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Molecular Microbiology, 37, 168–179.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, A. J. F., et al. (1999). Modern genetic analysis. New York: W. H Freeman.

    Google Scholar 

  • Han, K., et al. (2013). Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Scientific Reports, 3, 2101. doi:10.1038/srep02101.

    PubMed  PubMed Central  Google Scholar 

  • Heider, J., Spormann, A. M., Beller, H. R., & Widdel, F. (1999). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiology Reviews, 22, 459–473.

    Article  Google Scholar 

  • Heinemann, M., & Sauer, U. (2010). Systems biology of microbial metabolism. Current Opinion in Microbiology, 13, 337–343.

    Article  CAS  PubMed  Google Scholar 

  • Holland, I. B., Schmitt, L., & Young, J. (2005). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Molecular Membrane Biology, 22, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob-Dubuisson, F., Fernandez, R., & Coutte, L. (2004). Protein secretion through autotransporter and two-partner pathways. Biochimica et Biophysica Acta, 1694, 235–257.

    Article  CAS  PubMed  Google Scholar 

  • Jansen, R., Embden, J. D., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, A., & O’Donnell, M. (2005). Cellular DNA replicases: Components and dynamics at the replication fork. Annual Reviews in Biochemistry, 74, 283–315.

    Article  CAS  Google Scholar 

  • Jones, L., Carballido-Lopez, R., & Errington, J. (2001). Control of cell shape in bacteria: Helical actin-like filaments in Bacillus subtilis. Cell, 104, 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Klingworth, A., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41, e1.

    Article  Google Scholar 

  • Konstantinidis, K. T., Ramette, A., & Tiedje, J. M. (2006). The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B, 361, 1929–1940.

    Article  Google Scholar 

  • Lafontaine, D. L. J., & Tollervey, D. (2001). The function and synthesis of ribosomes. Nature Reviews Molecular Cell Biology, 2, 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Land, M., et al. (2015). Insights from 20 years of bacterial genome sequencing. Functional & Integrative Genomics, 15, 141–161.

    Article  CAS  Google Scholar 

  • Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Science USA, 82, 6955–6959.

    Article  CAS  Google Scholar 

  • Lederberg, J. (1987). Genetic recombination in bacteria: A discovery account. Annual Reviews of Genetics, 21, 23–46.

    Article  CAS  Google Scholar 

  • Leiman, P. G., et al. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proceedings of the National Academy of Science USA, 106, 4154–4159.

    Article  CAS  Google Scholar 

  • Links, M. G., Dumonceaux, T. J., Hemmingsen, S. M., & Hill, J. E. (2012). The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS ONE, 7, e49755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., & Ochman, H. (2007). Stepwise formation of the bacterial flagellar system. Proceedings of the National Academy of Science USA, 104, 7116–7121.

    Article  CAS  Google Scholar 

  • Low, D. A., Weyand, N. J., & Mahan, M. J. (2001). Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infection and Immunity, 69, 7197–7204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Stahl, D. A., & Brock, T. (2014). Brock biology of microorganisms (14th ed.). San Francisco: Pearson Benjamin-Cummings.

    Google Scholar 

  • McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.

    CAS  Google Scholar 

  • McFall-Ngai, M. J., & Ruby, E. G. (2000). Developmental biology in marine invertebrate symbioses. Current Opinion in Microbiology, 3, 603–607.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M. (2005). Twin-arginine-specific protein export in Escherichia coli. Research in Microbiology, 156, 131–136.

    Article  PubMed  Google Scholar 

  • Murzin, A. G., Lesk, A. M., & Chothia, C. (1994). Principles determining the structure of β-sheet barrels in proteins. I. A theoretical analysis. Journal of Molecular Biology, 236, 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  • Neylon, C., Kralicek, A. V., Hill, T. M., & Dixon, N. E. (2005). Replication termination in Escherichia coli: Structure and antihelicase activity of the Tus-Ter complex. Microbiology and Molecular Biology Reviews, 69, 501–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace, N. R., Olsen, G. J., & Woese, C. R. (1986). Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell, 45, 325–326.

    Article  CAS  PubMed  Google Scholar 

  • Papanikou, E., Karamanou, S., & Economou, A. (2007). Bacterial protein secretion through the translocase nanomachine. Nature Review Microbiology, 5, 839–851.

    Article  CAS  Google Scholar 

  • Proft, T., & Baker, E. N. (2009). Pili in gram-negative and gram-positive bacteria – Structure, assembly and their role in disease. Cellular and Molecular Life Sciences, 66, 613–635.

    Article  CAS  PubMed  Google Scholar 

  • Public Health England. (2014). Staining procedures. UK standards for microbiology investigations. TP 39 Issue 1.2. http://www.hpa.org.uk/SMI/pdf.

  • Rasmussen, L. J., Lobner-Olesen, A., & Marinus, M. G. (1995). Growth rate-dependent transcription initiation from the dam P2 promoter. Gene, 157, 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, J. D., Reddy, S. L., Hopkins, D. L., & Gabriel, D. W. (2007). TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Molecular Plant-Microbe Interactions, 20, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Lamothe, R., Nicolas, E., & Sherratt, D. J. (2012). Chromosome replication and segregation in bacteria. Annual Review of Genetics, 46, 121–143.

    Article  CAS  PubMed  Google Scholar 

  • Rico, F., Su, C., & Scheuring, S. (2011). Mechanical mapping of single membrane proteins at submolecular resolution. Nano Letters, 11, 3983–3986.

    Article  CAS  PubMed  Google Scholar 

  • Russell, A. B., Peterson, S. B., & Mougous, J. D. (2014). Type VI secretion system effectors: Poisons with a purpose. Nature Reviews Microbiology, 12, 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salman, V., Amann, R., Shub, D. A., & Schulz-Vogt, H. (2012). Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proceedings of the National Academy of Science, 109, 4203–4208.

    Article  CAS  Google Scholar 

  • Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäffer, C., & Messner, P. (2005). The structure of secondary cell wall polymers: How gram-positive bacteria stick their cell walls together. Microbiology, 151, 643–651.

    Article  PubMed  Google Scholar 

  • Scheuring, S., Lévy, D., & Rigaud, J. L. (2005). Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochimica et Biophysica Acta, 1712, 109–127.

    Article  CAS  PubMed  Google Scholar 

  • Shih, Y. L., & Rothfield, L. (2006). The bacterial cytoskeleton. Microbiology and Molecular Biology Reviews, 70, 729–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silhavy, T. J., Kahne, D., & Walker, S. (2012). The bacterial cell envelope. In L. Shapiro & R. Losick (Eds.), Additional perspectives on cell biology of bacteria (pp. 1–16). USA: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Soufo, H. J. D., & Graumann, P. L. (2004). Dynamic movement of actin-like proteins within bacterial cells. EMBO Reports, 5, 789–794.

    Article  Google Scholar 

  • Sundquist, A., et al. (2007). Bacterial flora-typing with targeted, chip-based pyrosequencing. BMC Microbiology, 7, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi, S., DiLuzio, W. R., Weibel, D. B., & Whitesides, G. M. (2005). Controlling the shape of filamentous cells of Escherichia coli. Nano Letters, 5, 1819–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, J. (2011). Microbial metabolomics. Current Genomics, 12, 391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, M. W., et al. (2004). Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Applied and Environmental Microbiology, 70, 4387–4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng, T. T., Tyler, B. M., & Setubal, J. C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiology, 9(Suppl. 1), S2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vollmer, W. (2008). Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiology Reviews, 32, 287–306.

    Article  CAS  PubMed  Google Scholar 

  • von Bodman, S. B., Bauer, W. D., & Coplin, D. L. (2003). Quorum sensing in plant-pathogenic bacteria. Annual Reviews of Phytopathology, 41, 455–482.

    Article  Google Scholar 

  • Wang, J. D., & Levin, P. A. (2009). Metabolism, cell growth and the bacterial cell cycle. Nature Reviews Microbiology, 7, 822–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, K. H., Blitchington, R. B., & Greene, R. C. (1990). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology, 28, 1942–1946.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51, 221–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarza, P., et al. (2014). Uniting the classification of cultured and uncultured bacteria abd archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12, 635.

    Article  CAS  PubMed  Google Scholar 

  • Zeigler, D. R. (2003). Gene sequences useful for predicting relatedness of whole genomes in bacteria. International Journal of Systematic Evolutive Microbiology, 53, 1893–1900.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). The Bacterial Cell. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_1

Download citation

Publish with us

Policies and ethics