Skip to main content

Circuit Optomechanics with Diamond Integrated Optical Devices

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

Nanophotonic devices provide a powerful resource for realizing optical components with additional mechanical degrees of freedom when they are made free-standing. Using top-down fabrication many individual nanophotonic components can be reproducibly assembled into complex circuits for on-chip signal processing and sensing applications. When waveguiding devices are detached from the underlying substrate additional mechanical degrees of freedom can be harnessed for new applications in tunable optics and chipscale sensing. For optimal performance of such optomechanical elements both outstanding optical and mechanical material properties are required which makes diamond a natural choice for integrated optomechanics. Here we present an overview of chipbased photonic components made from polycrystalline diamond thin films which serve as building blocks for circuit optomechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, M., Pernice, W. H. P., Xiong, C., Baehr-Jones, T., Hochberg, M., & Tang, H. X. (2008). Nature, 456, 480.

    Article  ADS  Google Scholar 

  2. Li, M., Pernice, W., & Tang, H. X. (2009). Nature Nanotechnology, 4, 377.

    Article  ADS  Google Scholar 

  3. Li, M., Pernice, W. H. P., & Tang, H. X. (2010). Applied Physics Letters, 97, 183110.

    Article  ADS  Google Scholar 

  4. Li, M., Pernice, W. H. P., & Tang, H. X. (2009). Nature Photonics, 3, 464.

    Article  ADS  Google Scholar 

  5. Sun, X., Fong, K. Y., Xiong, C., Pernice, W. H. P., & Tang, H. X. (2011). Optics Express, 19, 22316.

    Article  ADS  Google Scholar 

  6. Li, M., Pernice, W. H. P., & Tang, H. X. (2009). Physical Review Letters, 103, 223901.

    Article  ADS  Google Scholar 

  7. Wiederhecker, G. S., Chen, L., Gondarenko, A., & Lipson, M. (2009). Nature, 462, 633.

    Article  ADS  Google Scholar 

  8. Chan, J., Mayer Alegre, T. P., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., Aspelmeyer, M., & Painter, O. (2011). Nature, 478, 89.

    Article  ADS  Google Scholar 

  9. Clark, J. R., Hsu, W., Abdelmoneum, M. A., & Nguyen, C. (2005). IEEE/ASME Journal of Microelectromechanical Systems, 14, 1298.

    Article  Google Scholar 

  10. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O., & Kippenberg, T. J. (2008). Nature Physics, 4, 415.

    Article  ADS  Google Scholar 

  11. Xiong, C., Pernice, W. H. P., Sun, X., Schuck, C., Fong, K. Y., & Tang, H. X. (2012). New Journal of Physics, 14, 095014.

    Article  ADS  Google Scholar 

  12. Williams, O. A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., Haenen, K., & Jackman, R. B. (2008). Diamond and Related Materials, 17, 1080.

    Article  ADS  Google Scholar 

  13. Tonisch, K. L., Cimalla, V., Niebelschütz, F., Romanus, H., Eickhoff, M., & Ambacher, O. (2007). Physica Status Solidi C, 4, 2248.

    Article  ADS  Google Scholar 

  14. Rath, P., Khasminskaya, S., Wild, C., Nebel, C., & Pernice, W. (2013). Beilstein Journal of Nanotechnology, 4, 300–305.

    Article  Google Scholar 

  15. Rath, P., Khasminskaya, S., Wild, C., Nebel, C., & Pernice, W. (2013). Nature Communications, 4, 1690.

    Article  ADS  Google Scholar 

  16. Ovartchaiyapong, P., Pascal, L. M. A., Myers, B. A., Lauria, P., & Bleszynski-Jayich, A. C. (2012). Applied Physics Letters, 101, 163505.

    Article  ADS  Google Scholar 

  17. Rath, P., et al. (2014). Applied Physics Letters, 105, 251102.

    Article  ADS  Google Scholar 

  18. Williams, O. A., Kriele, A., Hees, J., Wolfer, M., Muller-Sebert, W., & Nebel, C. E. (2010). Chemical Physics Letters, 495, 84–89.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Pernice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pernice, W. (2017). Circuit Optomechanics with Diamond Integrated Optical Devices. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics