Skip to main content

Colloidal Nanophotonics: State-of-the-Art and Prospective

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

Nanocrystalline platform based on colloidal nanophysics, nanochemistry and nanoengineering is the promising unique versatile scientific and technological basement for emerging nano-optoelectronics. The approach offers straightforward multilevel throughout bottom-up scaling including: subnanometer molecular scale interfaces, nanometer-scale semiconductor quantum dot systems, submicron photonic scale. Notably, the colloidal multilevel bottom-up approach as the technological paradigm and semiconductor quantum dots as its principal physical entity, when coupled together do offer the unprecedented road map towards versatile and affordable platform where every optoelectronic component, including light emitting diodes, LEDs, lasers, photodetectors, signal processing elements (e.g. electrooptical modulators, optical switches) and various sensors can be developed in unified and cheap technological processes to compete with existing multi-base and expensive technological approaches. Interfacing of electronic devices with biosystems is the additional essential advantageous outcome of the colloidal bottom-up approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaponenko, S. (2010). Introduction to nanophotonics. New York: Cambridge.

    Book  Google Scholar 

  2. Barber, D. J., & Freestone, I. C. (1990). An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry, 32(1), 33–45.

    Article  Google Scholar 

  3. Colomban, P., Tournié, A., & Ricciardi, P. (2009). Raman spectroscopy of copper nanoparticle‐containing glass matrices: Ancient red stained‐glass windows. Journal of Raman Spectroscopy, 40(12), 1949–1955.

    Article  ADS  Google Scholar 

  4. Colomban, P. (2009, October). The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure. Journal of Nano Research, 8, 109–132.

    Google Scholar 

  5. Faraday, M. (1857). The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147, 145–181.

    Article  ADS  Google Scholar 

  6. Vargin, V. V. (1934). Color glasses, their production and properties. Leningrad: Goskhimtekhizdat (in Russian).

    Google Scholar 

  7. Baranov, A. V., & Bobovich, Y. S. (1982). Giant combinational scattering as structural analytical method in material research. Optics and Spectroscopy, 52, 385–387.

    Google Scholar 

  8. Kreibig, U., & Fragstein, C. V. (1969). The limitation of electron mean free path in small silver particles. Zeitschrift für Physik, 224(4), 307–323.

    Article  ADS  Google Scholar 

  9. Bykov, V. P. (1972). Spontaneous emission in a periodic structure. Soviet Journal of Experimental and Theoretical Physics, 35, 269.

    ADS  Google Scholar 

  10. Gaponenko, S., Demir, H. V., Seassal, C., & Woggon, U. (2016). Colloidal nanophotonics: The emerging technology platform. Optics Express, 24(2), A430–A433.

    Article  ADS  Google Scholar 

  11. Woggon, U. (1997). Optical properties of semiconductor quantum dots. Berlin/New York: Springer.

    Google Scholar 

  12. Gaponenko, S. V. (1998). Optical properties of semiconductor nanocrystals. New York: Cambridge University Press.

    Book  Google Scholar 

  13. Borrelli, N. F., Hall, D. W., Holland, H. J., & Smith, D. W. (1987). Quantum confinement effects of semiconducting microcrystallites in glass. Journal of Applied Physics, 61, 5399–5409.

    Article  ADS  Google Scholar 

  14. Shirasaki, Y., Supran, G. J., Bawendi, M. G., & Bulović, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7(1), 13–23.

    Article  ADS  Google Scholar 

  15. Guzelturk, B., Martinez, P. L. H., Zhang, Q., Xiong, Q., Sun, H., Sun, X. W., Govorov, A. O., & Demir, H. V. (2014). Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser & Photonics Reviews, 8(1), 73–93.

    Article  Google Scholar 

  16. Erdem, T., & Demir, H. V. (2011). Semiconductor nanocrystals as rare-earth alternatives. Nature Photonics, 5(3), 126–126.

    Article  ADS  Google Scholar 

  17. Erdem, T., & Demir, H. V. (2013). Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2(1), 57–81.

    Article  ADS  Google Scholar 

  18. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G., & Bulovic, V. (2009). Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Letters, 9(7), 2532–2536.

    Article  ADS  Google Scholar 

  19. Bae, W. K., Brovelli, S., & Klimov, V. I. (2013). Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bulletin, 38(09), 721–730.

    Article  Google Scholar 

  20. Demir, H. V., Nizamoglu, S., Erdem, T., Mutlugun, E., Gaponik, N., & Eychmüller, A. (2011). Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 6(6), 632–647.

    Article  Google Scholar 

  21. Klimov, V. I., Ivanov, S. A., Nanda, J., Achermann, M., Bezel, I., McGuire, J. A., & Piryatinski, A. (2007). Single-exciton optical gain in semiconductor nanocrystals. Nature, 447(7143), 441–446.

    Article  ADS  Google Scholar 

  22. Dang, C., Lee, J., Breen, C., Steckel, J. S., Coe-Sullivan, S., & Nurmikko, A. (2012). Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotechnology, 7(5), 335–339.

    Article  ADS  Google Scholar 

  23. Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S., & Demir, H. V. (2014). Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 8(7), 6599–6605.

    Article  Google Scholar 

  24. Achtstein, A. W., Prudnikau, A. V., Ermolenko, M. V., Gurinovich, L. I., Gaponenko, S. V., Woggon, U., Baranov, A. V., Leonov, M. Y., Rukhlenko, I. D., Fedorov, A. V., & Artemyev, M. V. (2014). Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano, 8(8), 7678–7686.

    Article  Google Scholar 

  25. Talapin, D. V., Lee, J. S., Kovalenko, M. V., & Shevchenko, E. V. (2009). Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 110(1), 389–458.

    Article  Google Scholar 

  26. Lesnyak, V., Gaponik, N., & Eychmüller, A. (2013). Colloidal semiconductor nanocrystals: The aqueous approach. Chemical Society Reviews, 42(7), 2905–2929.

    Article  Google Scholar 

  27. Palui, G., Aldeek, F., Wang, W., & Mattoussi, H. (2015). Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chemical Society Reviews, 44(1), 193–227.

    Article  Google Scholar 

  28. Zenkevich, E. I., Gaponenko, S. V., Sagun, E. I., & Borczyskowski, C. V. (2013). Bioconjugates based on semiconductor quantum dots and porphyrin ligands: Properties, exciton relaxation pathways and singlet oxygen generation efficiency for photodynamic therapy applications. Reviews Nanoscience Nanotechnology, 2, 184–207.

    Article  Google Scholar 

  29. Sargent, E. H. (2012). Colloidal quantum dot solar cells. Nature Photonics, 6(3), 133–135.

    Article  ADS  Google Scholar 

  30. Vogel, N., Weiss, C. K., & Landfester, K. (2012). From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography. Soft Matter, 8(15), 4044–4061.

    Article  ADS  Google Scholar 

  31. Zhukovsky, S. V., Ozel, T., Mutlugun, E., Gaponik, N., Eychmuller, A., Lavrinenko, A. V., Demir, H. V., & Gaponenko, S. V. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 22(15), 18290–18298.

    Article  ADS  Google Scholar 

  32. Ekimov, A. I., & Onushchenko, A. A. (1982). Quantum size effect in the optical-spectra of semiconductor micro-crystals. Soviet Physics Semiconductors-Ussr, 16(7), 775–778.

    Google Scholar 

  33. Efros, A. L., & Efros, A. L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-Ussr, 16(7), 772–775.

    Google Scholar 

  34. Brus, L. E. (1983). A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics, 79(11), 5566–5571.

    Article  ADS  Google Scholar 

  35. Bányai, L., & Koch, S. W. (1993). Semiconductor quantum dots. Singapore/River Edge: World Scientific.

    Book  Google Scholar 

  36. Woggon, U. (1997). Optical properties of semiconductor quantum dots. Berlin/New York: Springer.

    Google Scholar 

  37. Gaponenko, S. V. (1998). Optical properties of semiconductor nanocrystals. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  38. Benisty, H., Sotomayor-Torres, C. M., & Weisbuch, C. (1991). Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Physical Review B, 44(19), 10945.

    Article  ADS  Google Scholar 

  39. Gaponenko, S. V., Germanenko, I. N., Petrov, E. P., Stupak, A. P., Bondarenko, V. P., & Dorofeev, A. M. (1994). Time‐resolved spectroscopy of visibly emitting porous silicon. Applied Physics Letters, 64(1), 85–87.

    Article  ADS  Google Scholar 

  40. Wang, X., Ren, X., Kahen, K., Hahn, M. A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G. E., Efros, A. L., & Krauss, T. D. (2009). Non-blinking semiconductor nanocrystals. Nature, 459(7247), 686–689.

    Article  ADS  Google Scholar 

  41. Cragg, G. E., & Efros, A. L. (2009). Suppression of auger processes in confined structures. Nano Letters, 10(1), 313–317.

    Article  ADS  Google Scholar 

  42. Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., & Peng, X. (2014). Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515(7525), 96–99.

    Article  ADS  Google Scholar 

  43. Gurinovich, L. I., Lyutich, A. A., Stupak, A. P., Artem’ev, M. V., & Gaponenko, S. V. (2010). Effect of an electric field on photoluminescence of cadmium selenide nanocrystals. Journal of Applied Spectroscopy, 77(1), 120–125.

    Article  ADS  Google Scholar 

  44. Yeltik, A., Delikanli, S., Olutas, M., Kelestemur, Y., Guzelturk, B., & Demir, H. V. (2015). Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. The Journal of Physical Chemistry C, 119(47), 26768–26775.

    Article  Google Scholar 

  45. Achtstein, A. W., Schliwa, A., Prudnikau, A., Hardzei, M., Artemyev, M. V., Thomsen, C., & Woggon, U. (2012). Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Letters, 12(6), 3151–3157.

    Article  ADS  Google Scholar 

  46. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016.

    Article  ADS  Google Scholar 

  47. Chan, W. C., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385), 2016–2018.

    Article  ADS  Google Scholar 

  48. Kneipp, K., Moskovits, M., & Kneipp, H. (Eds.). (2006). Surface-enhanced Raman scattering: Physics and applications (Vol. 103). Berlin/New York: Springer.

    Google Scholar 

  49. Guzatov, D. V., Vaschenko, S. V., Stankevich, V. V., Lunevich, A. Y., Glukhov, Y. F., & Gaponenko, S. V. (2012). Plasmonic enhancement of molecular fluorescence near silver nanoparticles: Theory, modeling, and experiment. Journal of Physical Chemistry C, 116(19), 10723–10733.

    Article  Google Scholar 

  50. Vaschenko, S. V., Ramanenka, A. A., Guzatov, D. V., Stankevich, V. V., Lunevich, A. Y., Glukhov, Y. F., Sveklo, I. F., & Gaponenko, S. V. (2012). Plasmon-enhanced fluorescence of labeled biomolecules on top of a silver sol-gel film. Journal of Nanophotonics, 6(1), 061710.

    Article  ADS  Google Scholar 

  51. Tam, F., Goodrich, G. P., Johnson, B. R., & Halas, N. J. (2007). Plasmonic enhancement of molecular fluorescence. Nano Letters, 7(2), 496–501.

    Article  ADS  Google Scholar 

  52. Geddes, C. D., Cao, H., Gryczynski, I., Gryczynski, Z., & Lakowicz, J. R. (2003). Metal-enhanced fluorescence (MEF) due to silver colloid on a planar surface: Potential applications of indocyanine green to in vivo imaging. Journal of Physical Chemistry A, 107(18), 3443–3449.

    Article  ADS  Google Scholar 

  53. Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U., & Artemyev, M. (2002). Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Letters, 2(12), 1449–1452.

    Article  ADS  Google Scholar 

  54. Shimizu, K. T., Woo, W. K., Fisher, B. R., Eisler, H. J., & Bawendi, M. G. (2002). Surface-enhanced emission from single semiconductor nanocrystals. Physical Review Letters, 89(11), 117401.

    Article  ADS  Google Scholar 

  55. Milekhin, A. G., Yeryukov, N. A., Sveshnikova, L. L., Duda, T. A., Zenkevich, E. I., Kosolobov, S. S., Latyshev, A. V., Himcinski, C., Surovtsev, N. V., Adichtchev, S. V., Feng, Z. C., Wu, C. C., Wuu, D. S., & Zahn, D. R. T. (2011). Surface enhanced Raman scattering of light by ZnO nanostructures. Journal of Experimental and Theoretical Physics, 113, 983–991.

    Article  ADS  Google Scholar 

  56. Rumyantseva, A., Kostcheev, S., Adam, P. M., Gaponenko, S. V., Vaschenko, S. V., Kulakovich, O. S., Ramanenka, A. A., Guzatov, D. V., Korbutyak, D., Dzhagan, V., & Stroyuk, A. (2013). Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano, 7(4), 3420–3426.

    Article  Google Scholar 

  57. Ozel, T., Nizamoglu, S., Sefunc, M. A., Samarskaya, O., Ozel, I. O., Mutlugun, E., Lesnyak, V., Gaponik, N., Eychmuller, A., Gaponenko, S. V., & Demir, H. V. (2011). Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano, 5, 1328–1334.

    Article  Google Scholar 

  58. Rakovich, Y. P., Donegan, J. F., Gerlach, M., Bradley, A. L., Connolly, T. M., Boland, J. J., Gaponik, N., & Rogach, A. (2004). Fine structure of coupled optical modes in photonic molecules. Physical Review A, 70, 051801(R).

    Article  ADS  Google Scholar 

  59. Möller, B., Woggon, U., & Artemyev, M. V. (2006). Photons in coupled microsphere resonators. Journal of Optics A: Pure and Applied Optics, 8, 113–121.

    Article  Google Scholar 

  60. Bogomolov, V. N., Gaponenko, S. V., Germanenko, I. N., Kapitonov, A. M., Petrov, E. P., Gaponenko, N. V., Prokofiev, A. V., Ponyavina, A. N., Silvanovich, N. I., & Samoilovich, S. M. (1997). Photonic band gap phenomenon and optical properties of artificial opals. Physical Review E, 55, 7619–7626.

    Article  ADS  Google Scholar 

  61. Xiong, Z., Wei, T., Zhang, Y., Wang, J., & Li, J. (2016). Multiple-exposure colloidal lithography for enhancing light output of GaN-based light-emitting diodes by patterning Ni/Au electrodes. Optics Express, 24(2), A44–A51.

    Article  ADS  Google Scholar 

  62. Rogach, A. L. (2008). Semiconductor nanocrystal quantum dots. Wien/New York: Springer.

    Book  Google Scholar 

  63. Klimov, V. I. (Ed.). (2010). Nanocrystal quantum dots. Boca Raton: CRC Press.

    Google Scholar 

  64. Kim, J. Y., Voznyy, O., Zhitomirsky, D., & Sargent, E. H. (2013). 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Advanced Materials, 25(36), 4986–5010.

    Article  Google Scholar 

  65. Colloidal Nanophotonics. Optics Express, Special Issue, January 2016.

    Google Scholar 

Download references

Acknowledgement

The author acknowledges fruitful discussions with H.V. Demir during last years which made strong impact on the issues discussed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Gaponenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gaponenko, S.V. (2017). Colloidal Nanophotonics: State-of-the-Art and Prospective. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics