Skip to main content

Nanomaterials: Basic Concepts and Quantum Models

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

The term “nanosystem” refers to a system with at least one spatial dimension scaled down to the nanometer-scale (<100 nm) and includes zero-dimensional systems (such as metallic, semiconducting and ceramic nanoparticles), one-dimensional systems (such as nanowires, nanotubes and nanorods) and two-dimensional structures (thin films or plates).

The fascinating properties of materials at the nanoscale are continuing to attract the scientific interest in many research fields at both applicative and fundamental levels. The impossible to comprehensively review large number of reports and results available in the literature demonstrates the complexity in describing all the functionalities offered by the nanosystems as well as their properties as related to their fabrication approaches apart from departure from bulk form. To be able to gain insight into the potentialities and new future perspectives offered by the nanoworld and nanotechnology, knowledge and understanding of the physical fundamentals is a necessary starting point.

In this review paper, we consider and discuss the spectroscopy of nanomaterials by pointing out differences and breaking points as compared to the bulk counterparts, the importance of the surfaces, the characteristic length-scales (De Broglie wavelength, Fermi wavelength and exciton Bohr radius) that define various confinement regimes, the physics underlying the formalism to calculate the electronic dispersion of the low-dimensionality systems and the technological benefits on the excitonic binding energy implied by low-dimensionality (zero-, one- and two-dimensionaity). The presented discussion aims at laying a foundation to further studies for a reader new to the field of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R. (1992). There’s plenty of room at the bottom. Journal Microelectromechanical Systems, 1, 60–66.

    Article  Google Scholar 

  2. Taniguchi, N. (1974). On the basic concept of ‘Nano-Technology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering.

    Google Scholar 

  3. McMullan, D. (1995). Scanning electron microscopy 1928–1965. Scanning, 17(3), 175–185.

    Article  Google Scholar 

  4. Smith, K. C. A., & Oatley, C. W. (1955). The scanning electron microscope and its fields of application. British Journal of Applied Physics, 6(11), 391–399.

    Article  ADS  Google Scholar 

  5. Zaefferer, S. (2011). A critical review of orientation microscopy in SEM and TEM, Crystal Research and Technology. New Developments in Electron Diffraction, 46, 607–628.

    Google Scholar 

  6. Williams, D. B., & Carter, C. B. (2009). Transmission electron microscopy, a textbook for materials science (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  7. Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57–61.

    Article  ADS  Google Scholar 

  8. Giaever, I. (1960). Energy gap in superconductors measured by electron tunneling. Physical Review Letters, 5, 147–148.

    Article  ADS  Google Scholar 

  9. Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  ADS  Google Scholar 

  10. Synge, E. H. (1928). A suggested method for extending microscopic resolution into the ultra-microscopic region. Philosophical Magazine, 6, 356–362.

    Article  Google Scholar 

  11. Betzig, E., Trautman, J. K., Harris, T. D., S: Weiner, J., & Kostelak, R. L. (1991). Breaking the diffraction barrier: Optical microscopy on a nanometric scale. Science, 251, 1468–1470.

    Article  ADS  Google Scholar 

  12. Abbe, E. (1873). Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für mikroskopische Anatomie, 9, 413–468.

    Article  Google Scholar 

  13. Stroscio, M. A., & Dutta, M. (2001). Phonons in nanostructures. New York: Cambridge University Press.

    Book  Google Scholar 

  14. Liu, G. K., Zhuang, H. Z., & Chen, X. Y. (2002). Restricted phonon relaxation and anomalous thermalization of rare-earth ions in nanocrystals. Nano Letters, 2, 535–539.

    Article  ADS  Google Scholar 

  15. Meltzer, R. S., & Hong, K. S. (2000). Electron-phonon interactions in insulating nanoparticles: Eu2O3. Physical Review B, 61, 3396–3496.

    Article  ADS  Google Scholar 

  16. Tamura, A. (1995). Smoothed density of states of electrons and smoothed frequency spectrum of phonons for a mesoscopic system. Physical Review B, 52, 2688–2676.

    ADS  Google Scholar 

  17. Collins, J. (2016). Non-radiative processes in crystals and in nanocrystals. ECS Journal of Solid State Science and Technology, 5(1), R3170–R3184 and references therein.

    Article  Google Scholar 

  18. Heitz, R., Grundmann, M., Ledentsov, N. N., Eckey, L., Veit, M., Bimberg, D., Ustinov, V. M., Egorov, A. Y., Zhukov, A. E., Kopev, P. S., & Alferov, Z. I. (1996). Multiphonon-relaxation processes in self-organized InAs/GaAs quantum dots. Applied Physics Letters, 68, 361–363.

    Article  ADS  Google Scholar 

  19. Raymond, S., Fafard, S., Charbonneau, S., Leon, R., Leonard, D., Petroff, P. M., & Merz, J. L. (1995). Photocarrier recombination in AlyIn1-yAs/AlxGa1-xAs self-assembled quantum dots. Physical Review B, 52, 17238–17242.

    Article  ADS  Google Scholar 

  20. Efros, A. L., Kharchenko, V. A., & Rosen, M. (1995). Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes. Solid State Communications, 93, 281–284.

    Article  ADS  Google Scholar 

  21. Benisty, H., Sotomayor-Torres, C. M., & Weisbuch, C. (1991). Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Physical Review B, 44, 10945–10948.

    Article  ADS  Google Scholar 

  22. Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik A: Hadrons and Nuclei, 216, 398–410.

    Article  Google Scholar 

  23. Novotny, L., & Hecht, B. (2006). Principles of nano-optics (pp. 378–393). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  24. Fan, X., Zheng, W., & Singh, D. J. (2014). Light scattering and surface plasmons on small spherical particles (review). Light: Science & Applications, 3, e179. doi:10.1038/lsa.2014.60.

    Article  Google Scholar 

  25. Homol, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: Review. Sensors and Actuators B: Chemical, 54, 3–15.

    Article  Google Scholar 

  26. Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58, 267–297.

    Article  ADS  Google Scholar 

  27. Bohren, C. F., & Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley.

    Google Scholar 

  28. Kreibig, U., & Vollmer, M. (1995). Optical properties of metal clusters. Berlin: Springer.

    Book  Google Scholar 

  29. Warnes, W. L., Dereux, A., & Bobesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424, 824–830.

    Article  ADS  Google Scholar 

  30. Ghosh, S. K. (2011). Kubo gap as a factor governing the emergence of new physicochemical characteristics of the small metallic particulate. Assam University Journal of Science & Technology: Physics & Science Technology, 7, 114–121.

    ADS  Google Scholar 

  31. Kubo, R. (1962). Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan, 17, 975–986.

    Article  ADS  MATH  Google Scholar 

  32. Kubo, R., Kawabata, A., & Kobayashi, S. (1984). Electronic properties of small particles. Annual Review of Materials Science, 14, 49–66.

    Article  ADS  Google Scholar 

  33. Campion, A., & Kambhampati, P. (1998). Surface-enhanced Raman scattering. Chemical Society Reviews, 27, 241–250.

    Article  Google Scholar 

  34. Sharma, B., Cardinal, M. F., Kleinman, S. L., Greeneltch, N. G., Frontiera, R. R., Blaber, M. G., Schatz, G. C., & Van Duyne, R. P. (2013). High-performance SERS substrates: Advances and challenges. MRS Bulletin, 38, 615–624.

    Article  Google Scholar 

  35. Nie, S., & Enmory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced. Science, 275, 1102–1106.

    Article  Google Scholar 

  36. Jankiewicz, B. J., Jamiola, D., Choma, J., & Jaroniec, M. (2012). Silica–metal core–shell nanostructures. Advances in Colloid and Interface Science, 170, 28–47.

    Article  Google Scholar 

  37. Biener, J., Wittstock, A., Baumann, T. F., Weissmüller, J., Bäumer, M., & Hamza, A. V. (2009). Surface chemistry in nanoscale materials. Materials, 2, 2404–2428.

    Article  ADS  Google Scholar 

  38. Pawlow, P. (1909). The dependency of the melting point on the surface energy of a solid body. Zeitschrift für Physikalische Chemie, 65, 545–548.

    Google Scholar 

  39. Takagi, M. (1954). Electron-diffraction study of liquid-solid transition of thin metal films. Journal of the Physical Society of Japan, 9, 359–363.

    Article  ADS  Google Scholar 

  40. Goldstein, A. N., Echer, C. M., & Alivisatos, A. P. (1992). Melting in semiconductor nanocrystals. Science, 256, 1425–1427.

    Article  ADS  Google Scholar 

  41. Buffat, P., & Borel, J.-P. (1976). Size effect on the melting temperature of gold particles. Physical Review A: Atomic, Molecular, and Optical Physics, 13, 2287–2298.

    Article  ADS  Google Scholar 

  42. Sar, D. K., Nayak, P., & Nanda, K. K. (2008). Thermodynamic model for the size-dependent melting of prism-shaped nanoparticles. Physics Letters A, 372, 4627–4629.

    Article  ADS  MATH  Google Scholar 

  43. Qi, W. H. (2005). Size effect on melting temperature of nanosolids. Physica B, 368, 46–50.

    Article  ADS  Google Scholar 

  44. Sun, C. Q., Wang, Y., Tay, B. K., Li, S., Huang, H., & Zhang, Y. B. (2002). Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. The Journal of Physical Chemistry. B, 106, 10701–10705.

    Article  Google Scholar 

  45. Bachels, T., Guntherodt, H. J., & Schafer, R. (2000). Melting of isolated tin nanoparticles. Physical Review Letters, 85, 1250–1253.

    Article  ADS  Google Scholar 

  46. Zhang, M., Efremov, M. Y., Schiettekatte, F., Olson, E. A., Kwan, A. T., Lai, S. L., Wisleder, T., Greene, J. E., & Allen, L. H. (2000). Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Physical Review B, 62, 10548–10557.

    Article  ADS  Google Scholar 

  47. Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46, 1–19.

    Article  Google Scholar 

  48. Planck, M. (1901). Ueber das Gesetz der Energieverteilung in Normalspectrum. Annalen der Physik, 4, 553–563.

    Article  ADS  MATH  Google Scholar 

  49. Martynenko, Y. W., & Ognev, L. I. (2005). Thermal radiation from nanoparticles. Technical Physics, 50, 1522–1254.

    Article  ADS  Google Scholar 

  50. Wuttke, C., & Rauschenbenbeutel, A. (2013). Thermalization via heat radiation of an individual object thinner than the thermal wavelength. Physical Review Letters, 111(1–5), 024301.

    Article  ADS  Google Scholar 

  51. Kolhatkar, A. G., Jamison, A. C., Litvinov, D., Willson, R. C., & Lee, T. R. (2013). Tuning the magnetic properties of nanoparticles. International Journal of Molecular Sciences, 14, 15977–16009.

    Article  Google Scholar 

  52. Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. International Journal of Molecular Sciences, 14, 21266–21305.

    Article  Google Scholar 

  53. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. New York: Holt/Rineheart/Winston.

    MATH  Google Scholar 

  54. Kasap, S. O. (2002). From principles of electronic materials and devices (2nd ed.). Boston: McGraw-Hill.

    Google Scholar 

  55. Frenkel, Y. I. (1936). On the solid body model of heavy nuclei. Phys. Z. Soviet Union, 9, 158–186.

    Google Scholar 

  56. Wannier, G. H. (1937). The structure of electronic excitation levels in insulating crystals. Physics Review, 52, 191–197.

    Article  ADS  MATH  Google Scholar 

  57. Mott, N. F. (1938). Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals. Transactions of the Faraday Society, 34, 500–506.

    Article  Google Scholar 

  58. Knox, R. S. (1963). Theory of excitons. New York: Academic Press.

    MATH  Google Scholar 

  59. Bassani, F., & Pastori Parravicini, G. (1975). Electronic states and optical transitions in solids. Oxford: Pergamon Press.

    Google Scholar 

  60. Koch, W., Kira, M., Khitrova, G., & Gibbs, H. M. (2006). Semiconductor excitons in new light. Nature Materials, 5, 523–531.

    Article  ADS  Google Scholar 

  61. Haug, H., & Koch, S. W. (2006). In H. Haug & S. Koch (Eds.), Quantum theory of the optical and electronic properties of semiconductors (4th ed.). Singapore: World Scientific.

    Google Scholar 

  62. Nakajima, A., Futatsugi, T., Kosemura, K., Fukano, T., & Yokoyama, N. (1999). Si single-electron tunneling transistor with nanoscale floating dot stacked on a Coulomb island by self-aligned process. Journal of Vacuum Science & Technology, 17, 2163–2171.

    Article  ADS  Google Scholar 

  63. Leobandung, E., Guo, L., Wang, Y., & Chou, S. Y. (1995). Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K. Applied Physics Letters, 67, 938–940.

    Article  ADS  Google Scholar 

  64. Pikus, F. G., & Likharev, K. K. (1997). Nanoscale field-effect transistors: An ultimate size analysis. Applied Physics Letters, 71, 3661–3663.

    Article  ADS  Google Scholar 

  65. Zhang, S. K., Zhu, H. J., Lu, F., Jiang, Z. M., & Wang, X. (1998). Coulomb charging effect in self-assembled Ge quantum dots studied by admittance spectroscopy. Physical Review Letters, 80, 3340–3343.

    Article  ADS  Google Scholar 

  66. Ishikuro, H., Fujii, T., Saraya, T., Hashiguchi, G., Hiramoto, T., & Ikoma, T. (1996). Coulomb blockade oscillations at room temperature in a Si quantum wire metal-oxide-semiconductor field-effect transistor fabricated by anisotropic etching on a silicon-on-insulator substrate. Applied Physics Letters, 68, 3585–3587.

    Article  ADS  Google Scholar 

  67. Hanna, A. E., & Tinkham, M. (1991). Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Physical Review B, 44, 5919–5922.

    Article  ADS  Google Scholar 

  68. Grabert, H. (1991). Single charge tunneling: A brief introduction. Zeitschrift fur Physik B: Condensed Matter, 85, 319–325.

    Article  ADS  Google Scholar 

  69. Kim, K. (1998). Visible light emissions and single-electron tunneling from silicon quantum dots embedded in Si-rich SiO2 deposited in plasma phase. Physical Review B, 57, 13072–13076.

    Article  ADS  Google Scholar 

  70. Wilkins, R., Ben-Jacob, E., & Jaklevic, R. C. (1989). Physical Review Letters, 63, 801–804.

    Article  ADS  Google Scholar 

  71. Markovich, G., Leff, D. V., Chung, S. W., Soyez, H. M., Dunn, B., & Heath, J. R. (1997). Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals. Applied Physics Letters, 70, 3107–3109.

    Article  ADS  Google Scholar 

  72. Wang, B., Xiao, X., Huang, X., Sheng, P., & Hou, J. G. (2000). Single-electron tunneling study of two-dimensional gold clusters. Applied Physics Letters, 77, 1179–1181.

    Article  ADS  Google Scholar 

  73. Klein, D. L., McEuen, P. L., Bowen Katari, J. E., Roth, R., & Alivisatos, A. P. (1996). An approach to electrical studies of single nanocrystals. Applied Physics Letters, 68, 2574–2276.

    Article  ADS  Google Scholar 

  74. Chen, W., Ahmed, H., & Nakazoto, K. (1995). Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure. Applied Physics Letters, 66, 3383–3385.

    Article  ADS  Google Scholar 

  75. Meirav, U., Kastner, M. A., & Wind, S. J. (1990). Single-electron charging and periodic conductance resonances in GaAs nanostructures. Physical Review Letters, 65, 771–774.

    Article  ADS  Google Scholar 

  76. van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., & Foxon, C. T. (1988). Quantized conductance of point contacts in a two-dimensional electron gas. Physical Review Letters, 60, 848–850.

    Article  ADS  Google Scholar 

  77. Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press.

    Google Scholar 

  78. Lu, W., & Lieber, C. M. (2007). Nanoelectronics from the bottom up. Nature Materials, 6, 841–850.

    Article  ADS  Google Scholar 

  79. Bond, G. C., & Thomson, D. T. (1999). Catalysis by gold. Catalysis Reviews: Science and Engineering, 41(3–4), 319–388.

    Article  Google Scholar 

  80. Bond, G. C. (2002). Gold: A relatively new catalyst. Catalysis Today, 72, 5–9.

    Article  Google Scholar 

  81. Bone, W. A., & Wheeler, R. V. (1906). The combination of hydrogen and oxygen in contact with hot surfaces. Philosophical Transactions of the Royal Society A, 206, 1–67.

    Article  ADS  Google Scholar 

  82. Klabunde, K. J., Stark, J. V., Koper, O., Mohs, C., Park, D. G., Decker, S., Jiang, Y., Lagadic, I., & Zhang, D. (1996). Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry, 100, 12142–12153.

    Article  Google Scholar 

  83. Sun, C. Q. (2007). Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, 35, 1–159.

    Article  Google Scholar 

  84. Klabunde, K. J., & Richards, R. M. (Eds.). (2009). Nanoscale materials in chemistry (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  85. Sun, C. Q., Bai, H. L., Li, S., Tay, B. K., & Jiang, E. Y. (2004). Size-effect on the electronic structure and the thermal stability of a gold nanosolid. Acta Materialia, 52, 501–505.

    Article  Google Scholar 

  86. Sakai, H. (1996). Surface-induced melting of small particles. Surface Science, 351, 285–291.

    Article  ADS  Google Scholar 

  87. Stranski, I. N. (1942). Über das Verhalten nichtpolarer Kristalle dicht unterhalb des Schmelzpunktes und beim Schmelzpunkt selbst. Zeitschrift für Physik, 119, 22–34.

    Article  ADS  MATH  Google Scholar 

  88. Frenken, J. W. M., Maree, P. M. J., & Van Der Veen, J. F. (1986). Observation of surface-initiated melting. Physical Review B, 34, 7506–7516.

    Article  ADS  Google Scholar 

  89. Tartaglino, U., Zykova-Timan, T., Ercolessi, F., & Tosatti, E. (2005). Material surfaces and nanosystems close to the melting temperature (Proceedings of the IV International Conference High Temperature Capillarity). Journal of Materials Science, 40, 2141–2147.

    Article  ADS  Google Scholar 

  90. Mei, Q. S., & Lu, K. (2007). Melting and superheating of crystalline solids: From bulk to nanocrystals. Progress in Materials Science, 52, 1175–1262.

    Article  Google Scholar 

  91. Sang, L. V., Hoang, V. V., & Hang, N. T. T. (2013). Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. European Physical Journal: D, 67(64), 1–8.

    Google Scholar 

  92. Oxtoby, D. W. (1990). New perspectives on freezing and melting. Nature, 347, 725–730.

    Article  ADS  Google Scholar 

  93. Bischof, J., Scherer, D., Herminghaus, S., & Leiderer, P. (1996). Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Physical Review Letters, 77, 1536–1539.

    Article  ADS  Google Scholar 

  94. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., & Schlagowski, S. (1998). Spinodal dewetting in liquid crystal and liquid metal films. Science, 282, 916–919.

    Article  ADS  Google Scholar 

  95. Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P., & Boneberg, J. (2005). Jumping, nanodroplets. Science, 309, 2043–2045.

    Article  ADS  Google Scholar 

  96. Gromov, D. G., & Gavrilov, S. A. (2009). Manifestation of the heterogeneous mechanism upon melting of low-dimensional systems. Physics of the Solid State, 51, 2135–2144 and references therein.

    Article  ADS  Google Scholar 

  97. Wang, Y. T., Teitel, S., & Dellago, C. (2005). Melting of icosahedral gold nanoclusters from molecular dynamics simulations. The Journal of Chemical Physics, 122, 214722–214738.

    Article  ADS  Google Scholar 

  98. Zhao, Y., & Yakobson, B. I. (2003). What is the ground-state structure of the thinnest Si nanowires? Physical Review Letters, 91(1–4), 035501.

    Article  ADS  Google Scholar 

  99. Guisbiers, G., Van Overschelde, O., & Wautelet, M. (2008). Theoretical investigation of size and shape effects on the melting temperature and energy bandgap of TiO2 nanostructures. Applied Physics Letters, 92(1–3), 103121.

    Article  ADS  Google Scholar 

  100. Dash, J. G. (1999). History of the search for continuous melting. Reviews of Modern Physics, 71, 1737–1743 and references therein.

    Article  ADS  Google Scholar 

  101. Wang, Y., Teitel, S., & Dellago, C. (2004). Melting and equilibrium shape of icosahedral gold nanoparticles. Chemical Physics Letters, 394, 257–261.

    Article  ADS  Google Scholar 

  102. Chattopadhyuy, K., & Goswami, R. (1991). Melting and superheating of metals and alloys. Progress in Materials Science, 42, 287–300.

    Article  Google Scholar 

  103. Jiang, Q., Zhang, Z., & Li, J. C. (2000). Acta Materialia, 48, 4791–4795 and references therein.

    Article  Google Scholar 

  104. Shirinyan, A. S., Gusak, A. M., & Wautelet, M. (2005). Melting and superheating of nanowires. Acta Materialia, 55, 5025.

    Article  Google Scholar 

  105. Saka, H., Nishikawa, Y., & Imura, T. (1988). Melting temperature of In particles embedded in an Al matrix. Philosophical Magazine A, 57, 895–906.

    Article  ADS  Google Scholar 

  106. Thomson, J. J. (1888). Application of dynamics to physics and chemistry. London: McMillan.

    MATH  Google Scholar 

  107. Pawlow, P. (1910). Über den Dampfdruck der Körner einer festen Substanz. Zeitschrift für Physikalische Chemie, 68, 316–322.

    Google Scholar 

  108. Pawlow, P. N. (1910). Ueber den Einfluss der Oberfläche einer festen Phase auf die latente Wärme und die Temperatur des Schmelzens. Zeitschrift für Chemie und Industrie der Kolloide, 7, 37–39.

    Article  Google Scholar 

  109. Barybin, A., & Shapovalov, V. (2011). Modification of Pawlow’s thermodynamical model for the melting of small single-component particles. Journal of Applied Physics, 109(1–9), 034303.

    Article  ADS  Google Scholar 

  110. Lindemann, F. A. (1910). The calculation of molecular vibration frequencies. Zeitschrift für Physik, 11, 609–612.

    Google Scholar 

  111. Couchman, R., & Jesser, W. A. (1977). Thermodynamic theory of size dependence of melting temperature in metals. Nature, 269, 481–483.

    Article  ADS  Google Scholar 

  112. Couchman, P. R., & Ryan, C. L. (1978). The Lindmann hypothesis and the size-dependence of melting temperature. Philosophical Magazine A, 37, 369–373.

    Article  ADS  Google Scholar 

  113. Couchman, P. R. (1979). The Lindemann hypothesis and the size dependence of melting temperatures. II. Philosophical Magazine A, 40, 637–643.

    Article  ADS  Google Scholar 

  114. Hoshino, K., & Shimamura, S. (1979). A simple model for the melting of fine particles. Philosophical Magazine A, 40, 137–141.

    Article  ADS  Google Scholar 

  115. Nanda, K. K. (2009). Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana, 72, 617–628.

    Article  ADS  Google Scholar 

  116. Hanszen, K. J. (1960). Theoretische Untersuchungen über den Schmelzpunkt Ein Beitrag zur Thermodynamik der Grenzflächen. Zeitschrift für Physik, 157, 523–553.

    Article  ADS  Google Scholar 

  117. Beaglehole, D. (1991). Surface melting of small particles, and the effects of surface impurities. Journal of Crystal Growth, 112, 663–669.

    Article  ADS  Google Scholar 

  118. Wautelet, M. (1990). Size effect on the melting (or disordering) temperature of small particles. Solid State Communications, 74, 1237–1239.

    Article  ADS  Google Scholar 

  119. Qi, W. H., Wang, M. P., Zhou, M., Shen, X. Q., & Zhang, X. F. (2006). Modeling cohesive energy and melting temperature of nanocrystals. Journal of Physics and Chemistry of Solids, 67, 851–855.

    Article  ADS  Google Scholar 

  120. Yang, C. C., & Li, S. (2007). Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Physical Review B, 75(1–5), 165413.

    Article  ADS  Google Scholar 

  121. Nanda, K. K., Sahu, S. N., & Behera, S. N. (2002). Liquid-drop model for the size-dependent melting of low-dimensional systems. Physical Review A, 66(1–8), 013208.

    Article  ADS  Google Scholar 

  122. Ercolessi, F., Andreoni, W., & Tosatti, E. (1991). Melting of small gold particles: Mechanism and size effect. Physical Review Letters, 66, 911–914.

    Article  ADS  Google Scholar 

  123. Celestini, F., Pellenq, R. J.-M., Bordarier, P., & Rousseau, B. (1996). Melting of Lennard-Jones clusters in confined geometries. Zeitschrift für Physik D Atoms, 37, 49–53.

    ADS  Google Scholar 

  124. Delogu, F. (2005). Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Physical Review B, 72, 205418.

    Article  ADS  Google Scholar 

  125. Alavi, S., & Thompson, D. L. (2006). Molecular dynamics simulation of the melting of aluminum nanoparticles. The Journal of Physical Chemistry. A, 110, 1518–1523.

    Article  ADS  Google Scholar 

  126. Wang, Y., & Dellago, C. (2003). Structural and morphological transitions in gold nanorods: A computer simulation study. The Journal of Physical Chemistry. B, 107, 9214–9219.

    Article  Google Scholar 

  127. Zhang, Y., Wen, Y.-H., Zheng, J.-C., & Zhu, Z. (2009). Energetic and structural evolution of gold nanowire under heating process: A molecular dynamics study. Physics Letters A, 373, 3454–3458.

    Article  ADS  Google Scholar 

  128. Wen, Y.-H., Zhang, Y., Zheng, J.-C., Zhu, Z.-Z., & Sun, S.-G. (2009). Orientation-dependent structural transition and melting of Au nanowires. Journal of Physical Chemistry C, 113(48), 20611–20617.

    Article  Google Scholar 

  129. Cross, M. W., & Varhue, W. J. (2008). Radiative melting of crystalline ruthenium oxide nanorods. Nanotechnology, 19, 435705 (5 pp).

    Article  ADS  Google Scholar 

  130. Karabacak, T., DeLuca, J. S., Wang, P.-I., Ten Eyck, G. A., Ye, D., Wang, G., & Lu, T. (2006). Low temperature melting of copper nanorod arrays. Journal of Applied Physics, 99(1–6), 064304.

    Article  ADS  Google Scholar 

  131. Olson, E. A., Yu Efremov, M., Zhang, M., Zhang, Z., & Allen, L. H. (2005). Size-dependent melting of Bi nanoparticles. Journal of Applied Physics, 97, 034304 (9 pages).

    Article  ADS  Google Scholar 

  132. Coombes, C. J. (1972). The melting of small particles of lead and indium. Journal of Physics F: Metal Physics, 2, 441–449.

    Article  ADS  Google Scholar 

  133. Wronski, C. R. M. (1967). The size dependence of the melting point of small particles of tin. Journal of Applied Physics, 18, 1731–1737.

    Google Scholar 

  134. Wang, P.-I., Lee, S. H., Parker, T. C., Frey, M. D., Karabacak, T., Lu, J.-Q., & Lu, T.-M. (2009). Low temperature wafer bonding by copper nanorod array. Electrochemical and Solid-State Letters, 124, H138–H141.

    Article  Google Scholar 

  135. Weisbuch, C., & Vinter, B. (2014). Quantum semiconductor structures: Fundamentals and applications. Boston: Academic Press.

    Google Scholar 

  136. Bastard, G. (1990). Wave mechanics applied to semiconductor heterostructures. New York: Wiley.

    Google Scholar 

  137. Esaki, L., & Tsu, R. (1970). Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 14, 61–65.

    Article  Google Scholar 

  138. Nag, B. R. (2000). Physics of quantum well devices. Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  139. Cho, A. Y. (1991). Advances in molecular beam epitaxy (MBE). Journal of Crystal Growth, 111, 1–13.

    Article  ADS  Google Scholar 

  140. Esaki, L., & Chang, L. L. (1974). New transport phenomenon in a semiconductor superlattice. Physical Review Letters, 33, 495–498.

    Article  ADS  Google Scholar 

  141. Dingle, R., Wiegmann, W., & Henry, C. H. (1974). Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Physical Review Letters, 33, 827–830.

    Article  ADS  Google Scholar 

  142. Bastard, G. (1981). Superlattice band structure in the envelope-function approximation. Physical Review B, 24, 5693–5697.

    Article  ADS  Google Scholar 

  143. Bastard, G. (1982). Theoretical investigations of superlattice band structure in the envelope-function approximation. Physical Review B, 25, 7584–7597.

    Article  ADS  Google Scholar 

  144. Altarelli, M. (1986). In G. Allan, G. Bastard, N. Boccara, M. Lannoo, & M. Voods (Eds.), Heterojunctions and semiconductor superlattices. Berlin/New York: Springer-Verlag.

    Google Scholar 

  145. White, S. R., & Sham, L. J. (1981). Electronic properties of flat-band semiconductor heterostructures. Physical Review Letters, 47, 879–882.

    Article  ADS  Google Scholar 

  146. Weisbuch, C. (1987). Fundamental properties of III-V semiconductor two-dimensional quantized structures: The basis for optical and electronic device applications. In R. Dingle (Ed.), Semiconductors and Semimetals (Vol. 24). New York: Academic Press.

    Google Scholar 

  147. Dean, P. J. (1977). III–V compound semiconductors. In J. I. Pankove (Ed.), Electroluminescence (pp. 63–132). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  148. Nakamura, S., Pearton, S., & Fasol, G. (2000). The blue laser diode (2nd ed.). Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  149. Bugajski, M., & Reginski, K. (1996). Optical properties of semiconductor quantum wells. Opto-Electronics Review, 4, 83–100.

    Google Scholar 

  150. Fox, M. (2001). Optical properties of solids. Oxford: Clarendon.

    Google Scholar 

  151. Ando, T., Fowler, A. D., & Stern, F. (1982). Electronic properties of two-dimensional systems. Reviews of Modern Physics, 54, 437–672.

    Article  ADS  Google Scholar 

  152. Han, J., Crawford, M. H., Shul, R. J., Figiel, J. J., Banas, M., Zhang, L., Song, Y. K., Zhou, H., & Nurmikko, A. V. (1998). AlGaN/GaN quantum well ultraviolet light emitting diodes. Applied Physics Letters, 73, 1688–1690.

    Article  ADS  Google Scholar 

  153. Sturge, M. D. (1962). Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV. Physics Review, 127, 768–773: Erratum Physics Review, 129, 2835 (1963).

    Article  ADS  Google Scholar 

  154. Greene, R. L., Bajaj, K. K., & E: Phelps, D. (1984). Energy levels of Wannier excitons in GaAs − Ga1−xAlxAs quantum-well structures. Physical Review B, 29, 1807–1812.

    Article  ADS  Google Scholar 

  155. Bastard, G., Mendez, E. E., Chang, L. L., & Esaki, L. (1982). Exciton binding energy in quantum wells. Physical Review B, 26, 1974–1979.

    Article  ADS  Google Scholar 

  156. Shinada, M., & Sugano, S. (1966). Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. Journal of the Physical Society of Japan, 21, 1936–1946.

    Article  ADS  Google Scholar 

  157. Iotti, R. C., & Andreani, L. C. (1997). Crossover from strong to weak confinement for excitons in shallow or narrow quantum wells. Physical Review B, 56, 3922–3932.

    Article  ADS  Google Scholar 

  158. Chemia, D. S., & Miller, D. A. B. (1985). Excitonic nonlinear-optical effects in semiconductor quantum-well structures. Journal of the Optical Society of America B: Optical Physics, 2, 1155–1173.

    Article  ADS  Google Scholar 

  159. Loehr, J. P., & Singh, J. (1990). Nonvariational numerical calculations of excitonic properties in quantum wells in the presence of strain, electric fields, and free carriers. Physical Review B, 42, 7154–7162.

    Article  ADS  Google Scholar 

  160. Miller, R. C., Kleinman, D. A., Nordland, W. A., Jr., & Gossard, A. C. (1980). Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures. Physical Review B, 22, 863–871.

    Article  ADS  Google Scholar 

  161. Sanders, G. D., & Chang, Y. C. (1985). Optical properties in modulation-doped GaAs-Ga1−xAlxAs quantum wells. Physical Review B, 31, 6892–6895.

    Article  ADS  Google Scholar 

  162. Miller, D. A. B., Chemia, D. S., Eilenberger, D. J., Smith, P. W., Gossard, A. C., & Tsang, W. T. (1982). Large room-temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures. Applied Physics Letters, 41, 679–681.

    Article  ADS  Google Scholar 

  163. Law, M., Goldberger, J., & Yang, P. (2004). Semiconductor nanowires and nanotubes. Annual Review of Materials Research, 34, 83–122. -(first published online as a Review in Advance, 2004 DOI:10.1146/annurev.matsci.34.040203.112300).

    Article  ADS  Google Scholar 

  164. Petroff, P. M., Gossard, A. C., Logan, R. A., & Wiegmann, W. (1983). Toward quantum well wires: Fabrication and optical properties. Applied Physics Letters, 41, 635–637.

    Article  ADS  Google Scholar 

  165. Stern, M. B., Craighead, H. G., Liao, P. F., & Mankiewich, P. M. (1984). Fabrication of 20‐nm structures in GaAs. Applied Physics Letters, 45, 410–412.

    Article  ADS  Google Scholar 

  166. Kash, K., Scherer, A., Worlock, J. M., Craighead, H. G., & Tamargo, M. C. (1986). Optical spectroscopy of ultrasmall structures etched from quantum wells. Applied Physics Letters, 49, 1043–1045.

    Article  ADS  Google Scholar 

  167. Grambow, P., Demel, T., Heitmann, D., Kohl, M., Schiile, R., & Ploog, K. (1989). Preparation of One-Dimensional Single and Multi-Layered quantum wire by ultrafine deep mesa etching techniques. Microelectronic Engineering, 9, 357–360.

    Article  Google Scholar 

  168. Kohl, M., Heitmann, D., Grambow, P., & Ploog, K. (1989). One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires. Physical Review Letters, 63, 2124–2127.

    Article  ADS  Google Scholar 

  169. Kapon, E., Tamargo, M. C., & Hwang, D. M. (1987). Molecular beam epitaxy of GaAs/AlGaAs superlattice heterostructures on nonplanar substrates. Applied Physics Letters, 50, 347–349.

    Article  ADS  Google Scholar 

  170. Turco, F. S., Simhony, S., Kash, K., Hwang, D. M., Ravi, T. S., Kapon, E., & Tamargo, M. C. (1990). Molecular beam epitaxial growth of GaAs/AlAs and GaAs/AlGaAs quantum wells on sub-micron-period corrugated substrates. Journal of Crystal Growth, 104, 766–772.

    Article  ADS  Google Scholar 

  171. Hoenk, M. E., Nieh, C. W., Chen, H. Z., & Vahala, K. J. (1989). Compositional modulation in AlxGa1−xAs epilayers grown by molecular beam epitaxy on the (111) facets of grooves in a nonplanar substrate. Applied Physics Letters, 55, 53–55.

    Article  ADS  Google Scholar 

  172. Bhat, R., Kapon, E., Hwang, D. M., Koza, M. A., & Yun, C. P. (1988). Patterned quantum well heterostructures grown by OMCVD on non-planar substrates: Applications to extremely narrow SQW lasers. Journal of.Crystal Growth, 93, 850–856.

    Article  ADS  Google Scholar 

  173. Kapon, E., Walther, M., Christen, J., Grundmann, M., Caneau, C., Hwang, D. M., Colas, E., Bhat, R., Song, G. H., & Bimberg, D. (1992). Quantum wire heterostructure for optoelectronic applications. Superlattices and Microstructures, 12, 491–499.

    Article  ADS  Google Scholar 

  174. Kash, K., Bhat, R., Mahoney, D. D., Lin, P. S. D., Scherer, A., Worlock, J. M., Van der Gaag, B. P., Koza, M., & Grabbe, P. (1989). Strain‐induced confinement of carriers to quantum wires and dots within an InGaAs‐InP quantum well. Applied Physics Letters, 55, 681–683.

    Article  ADS  Google Scholar 

  175. Gershoni, D., Weiner, J. S., Chu, S. N. G., Baraff, G. A., Vandenberg, J. M., Pfeiffer, L. N., West, K., Logan, R. A., & Tanbun-Ek, T. (1990). Optical transitions in quantum wires with strain-induced lateral confinement. Physical Review Letters, 65, 1631–1634.

    Article  ADS  Google Scholar 

  176. Petroff, P. M., Gossard, A. C., & Wiegmann, W. (1984). Structure of AlAs‐GaAs interfaces grown on (100) vicinal surfaces by molecular beam epitaxy. Applied Physics Letters, 45, 620–623.

    Article  ADS  Google Scholar 

  177. Pryor, C. (1991). Electronic structure and optical properties of serpentine superlattice quantum-wire arrays. Physical Review B, 44, 12912–12917.

    Article  ADS  Google Scholar 

  178. Rossi, F., & Molinari, E. (1996). Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation. Physical Review B, 53, 16462–16473.

    Article  ADS  Google Scholar 

  179. Chang, K., & Xia, J. B. (1998). Quantum-confined Stark effects of exciton states in V-shaped GaAs/AlxGa1−xAs quantum wires. Physical Review B, 58, 2031–2037.

    Article  ADS  Google Scholar 

  180. Bockelmann, U., & Bastard, G. (1991). Interband optical transitions in semiconductor quantum wires: Selection rules and absorption spectra. Europhysics Letters, 15, 215–220.

    Article  ADS  Google Scholar 

  181. Suemune, I., & Coldren, L. A. (1988). Band-mixing effects and excitonic optical properties in GaAs quantum wire structures-comparison with the quantum wells. IEEE Journal of Quantum Electronics, QE-24, 1778–1790.

    Article  ADS  Google Scholar 

  182. Einevoll, G. T., & Chang, Y. C. (1989). Effective bond-orbital model for acceptor states in semiconductors and quantum dots. Physical Review B, 40, 9683–9697.

    Article  ADS  Google Scholar 

  183. Citrin, D. S., & Chang, Y. C. (1990). Subband structures of semiconductor quantum wires from the effective-bond orbital model. Journal of Applied Physics, 68, 161–168.

    Article  ADS  Google Scholar 

  184. Citrin, D. S., & Chang, Y. C. (1991). Theory of optical anisotropy in quantum-well-wire arrays with two-dimensional quantum confinement. Physical Review B, 43, 11703–11719.

    Article  ADS  Google Scholar 

  185. McIntyre, C. R., & Sham, L. H. (1992). Theory of luminescence polarization anisotropy in quantum wires. Physical Review B, 45, 9443–9446.

    Article  ADS  Google Scholar 

  186. Sercel, P. C., & Vahala, K. J. (1990). Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band‐coupling effects or determining the polarization dependence of optical matrix elements in quantum wires with band‐coupling effects. Applied Physics Letters, 57, 545–547.

    Article  ADS  Google Scholar 

  187. Sercel, P. C., & Vahala, K. J. (1991). Polarization dependence of optical absorption and emission in quantum wires. Physical Review B, 44, 5681–5691.

    Article  ADS  Google Scholar 

  188. Oberli, D. Y., Vouilloz, F., Dupertuis, M.-A., Fall, C., & Kapon, E. (1995). Optical spectroscopy of semiconductor quantum wires. Il Nuovo Cimento D, 17(11–12), 1641–1650.

    Google Scholar 

  189. Nagamune, Y., Arakawa, Y., Tsukamoto, S., Nishioka, M., Sasaki, S., & Miura, N. (1992). Photoluminescence spectra and anisotropic energy shift of GaAs quantum wires in high magnetic fields. Physical Review Letters, 69, 2963–2966.

    Article  ADS  Google Scholar 

  190. Wegscheider, W., Pfeiffer, L. N., Dignam, M. M., Pinczuk, A., West, K. W., McCall, S. L., & Hull, R. (1993). Lasing from excitons in quantum wires. Physical Review Letters, 71, 4071–4074.

    Article  ADS  Google Scholar 

  191. Rinaldi, R., Cingolani, R., Lepore, M., Ferrara, M., Catalano, I. M., Rossi, F., Rota, L., Molinari, E., Lugli, P., Marti, U., Martin, D., Morier-Gemoud, F., Ruterana, P., & Reinhart, F. K. (1994). Exciton binding energy in GaAs V-shaped quantum wires. Physical Review Letters, 73, 2899–2902.

    Article  ADS  Google Scholar 

  192. Someya, T., Akiyama, H., & Sakaki, H. (1995). Laterally squeezed excitonic wave function in quantum wires. Physical Review Letters, 74, 3664–3666.

    Article  ADS  Google Scholar 

  193. Someya, T., Akiyama, H., & Sakaki, H. (1996). Enhanced binding energy of one-dimensional excitons in quantum wires. Physical Review Letters, 76, 2965–2967.

    Article  ADS  Google Scholar 

  194. Weman, H., Potemski, M., Lazzouni, M. E., Miller, M. S., & Merz, J. L. (1996). Magneto-optical determination of exciton binding energies in quantum-wire superlattices. Physical Review B, 53, 6959–6962 and references therein.

    Article  ADS  Google Scholar 

  195. Loudon, R. (1959). One-dimensional hydrogen atom. American Journal of Physics, 27, 649–655.

    Article  ADS  Google Scholar 

  196. Elliot, R. J., & Loudon, R. (1959). Theory of fine structure on the absorption edge in semiconductors. Journal of Physics and Chemistry of Solids, 8, 382–388.

    Article  ADS  Google Scholar 

  197. Elliot, R. J., & Loudon, R. (1960). Theory of the absorption edge in semiconductors in a high magnetic field. Journal of Physics and Chemistry of Solids, 15, 196–207.

    Article  ADS  MathSciNet  Google Scholar 

  198. Ogawa, T., & Takagahara, T. (1991). Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system. Physical Review B, 43, 14325–14328.

    Article  ADS  Google Scholar 

  199. Ogawa, T., & Takagahara, T. (1991). Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects. Physical Review B, 44, 8138–8156.

    Article  ADS  Google Scholar 

  200. Chang, Y. C., Chang, L. L., & Esaki, L. (1985). A new one‐dimensional quantum well structure. Applied Physics Letters, 47, 1324–1326.

    Article  ADS  Google Scholar 

  201. Rossi, F., Goldoni, G., & Molinari, E. (1997). Shape-independent scaling of excitonic confinement in realistic quantum wires. Physical Review Letters, 78, 3527–3530.

    Article  ADS  Google Scholar 

  202. Lage, H., Heitmann, D., Cingolani, R., Granbow, P., & Ploog, K. (1991). Center-of-mass quantization of excitons in GaAs quantum-well wires. Physical Review B, 44, 6550–6553.

    Article  ADS  Google Scholar 

  203. Rinaldi, R., Cingolani, R., Ferrara, M., Lage, H., Teitmann, D., & Ploog, K. (1992). Emission properties of quantum-well wires under stationary conditions. Physical Review B, 47, 7275.

    Article  ADS  Google Scholar 

  204. Kapon, E., Hwang, D. M., & Bhat, R. (1989). Stimulated emission in semiconductor quantum wire heterostructures. Physical Review Letters, 63, 430–433.

    Article  ADS  Google Scholar 

  205. Bimberg, D., Grundmann, M., & Ledentsov, N. N. (1998). Quantum dot heterostructures. Chichester: Wiley.

    Google Scholar 

  206. Walter, P., Welcomme, E., Hallegot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssiere, P., Breniaux, R., Leveque, J. L., & Tsoucaris, G. (2006). Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Letters, 6, 2215–2219.

    Article  ADS  Google Scholar 

  207. Onushchenko, A. A. (1981). Quantum size effect in 3-dimensional microscopic semiconductor crystals. JETP Letters, 34, 345–349.

    ADS  Google Scholar 

  208. Efros, A. L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics – Semiconductors, 16, 772–775.

    Google Scholar 

  209. Rossetti, R., Ellison, J. L., Gibson, J. M., & Brus, L. E. (1984). Size effects in the excited electronic states of small colloidal CdS crystallites. The Journal of Chemical Physics, 80, 4464–4469.

    Article  ADS  Google Scholar 

  210. Yoffe, A. D. (2001). Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics, 50, 1–208.

    Article  ADS  Google Scholar 

  211. Bryan, J. D., & Gamelin, D. R. (2005). Doped semiconductor nanocrystals: Synthesis, characterization, physical properties, and applications. Progress in Inorganic Chemistry, 54, 47–126.

    Article  Google Scholar 

  212. Jiang, W. H., Xu, H. Z., Xu, B., Ye, X. L., Wu, J., Ding, D., Liang, J. B., & Wang, Z. G. (2000). Annealing effect on the surface morphology and photoluminescence of InGaAs/GaAs quantum dots grown by molecular beam epitaxy. Journal of Crystal Growth, 212, 356–359.

    Article  ADS  Google Scholar 

  213. Sellin, R. L., Ribbat, C., Grundmann, M., Ledentsov, N. N., & Bimberg, D. (2001). Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Applied Physics Letters, 78, 1207–1209.

    Article  ADS  Google Scholar 

  214. Tsatsulnikov, A. F., Kovsh, A. R., Zhukov, A. E., Shernyakov, Y. M., Musikhin, Y. G., Ustinov, V. M., Bert, N. A., Kopev, P. S., Alferov, Z. I., Mintairov, A. M., Merz, J. L., Ledentsov, N. N., & Bimberg, D. (2000). Volmer–Weber and Stranski–Krastanov InAs-(Al,Ga) As quantum dots emitting at 1.3 μm. Journal of Applied Physics, 88, 6272–6275.

    Article  ADS  Google Scholar 

  215. Ledentsov, N. N., Shchukin, V. A., Grundmann, M., Kirstaedter, N., B¨ohrer, J., Schmidt, O., Bimberg, D., Ustinov, V. M., Egorov, A. Y., Zhukov, A. E., Kopev, P. S., Zaitsev, S. V., Gordeev, N. Y., Alferov, Z. I., Borovkov, A. I., Kosogov, A. O., Ruvimov, S. S., Werner, P., Gosele, U., & Heydenreich, J. (1996). Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Physical Review B, 54, 8743–8750.

    Article  ADS  Google Scholar 

  216. Xia, Y., Xia, X., & Peng, H.-C. (2015). Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. Journal of the American Chemical Society, 137, 7947–7966.

    Article  Google Scholar 

  217. Overbeek, J. T. G. (1982). Monodisperse colloidal systems, fascinating and useful. Advances in Colloid and Interface Science, 15, 251–277.

    Article  Google Scholar 

  218. Reed, M. A., Randall, J. N., Aggarwal, R. J., Matyi, R. J., Moore, T. M., & Wetsel, A. E. (1988). Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Physical Review Letters, 60, 535–537.

    Article  ADS  Google Scholar 

  219. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.

    Article  ADS  Google Scholar 

  220. Banin, U., Bruchez, M., Alivisatos, A. P., Ha, T., Weiss, S., & Chemla, D. S. (1999). Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. The Journal of Chemical Physics, 110, 1195–1201.

    Article  ADS  Google Scholar 

  221. Empedocles, S. A., Neuhauser, R., Shimizu, K., & Bawendi, M. G. (1999). Photoluminescence from single semiconductor nanostructures. Advanced Materials, 11, 1243–1256.

    Article  Google Scholar 

  222. Chavez-Pirson, A., Temmyo, J., Kamada, H., Gotoh, H., & Ando, H. (1998). Near-field optical spectroscopy and imaging of single InGaAs/AlGaAs quantum dots. Applied Physics Letters, 72, 3494–3496.

    Article  ADS  Google Scholar 

  223. Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802–804.

    Article  ADS  Google Scholar 

  224. Nötzel, R., Niu, Z., Ramsteiner, M., Schönherr, H.-P., Tranpert, A., Däweritz, L., & Ploog, K. H. (1998). Uniform quantum-dot arrays formed by natural self-faceting on patterned substrates. Nature, 392, 56–59.

    Article  ADS  Google Scholar 

  225. Tersoff, J., Teichert, C., & Lagally, M. G. (1996). Self-organization in growth of quantum dot superlattices. Physical Review Letters, 76, 1675–1678.

    Article  ADS  Google Scholar 

  226. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., & Park, D. (1996). Homogeneous linewidths in the optical spectrum of a single Gallium Arsenide Quantum Dot. Science, 273, 87–90.

    Article  ADS  Google Scholar 

  227. Brus, L. E. (1986). Electronic wave functions in semiconductor clusters: Experiment and theory. The Journal of Physical Chemisty, 90(12), 2555–2560; Brus, L. E. (1984). Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 80, 4403–4409.

    Google Scholar 

  228. Ronda, C. R. (2008). In R. Ronda (Ed.), Luminescence: From theory to applications. Weinheim: Wiley-VCH Verlag GmbH&Co.KGaA.

    Google Scholar 

  229. Hartmann, A., Ducommun, Y., Kapon, E., Hohenester, U., & Molinari, E. (2000). Few-particle effects in semiconductor quantum dots: Observation of multicharged excitons. Physical Review Letters, 84, 5648–5651.

    Article  ADS  Google Scholar 

  230. Warburton, R. J., Schaflein, C., Haft, D., Bickel, F., Lorke, A., Karrai, K., Garcia, J. M., Schoenfeld, W., & Petroff, P. M. (2000). Optical emission from a charge-tunable quantum ring. Nature, 405, 926–929.

    Article  ADS  Google Scholar 

  231. Finley, J. J., Ashmore, A. D., Lemaître, A., Mowbray, D. J., Skolnick, M. S., Itskevich, I. E., Maksym, P. A., Hopkinson, M., & Krauss, T. F. (2001). Charged and neutral exciton complexes in individual self-assembled In (Ga) As quantum dots. Physical Review B, 63, 073307–073310.

    Article  ADS  Google Scholar 

  232. Findeis, F., Baier, M., Zrenner, A., Bichler, M., Abstreiter, G., Hohenester, U., & Molinari, E. (2001). Optical excitations of a self-assembled artificial ion. Physics Review, 63(1–4), 121309.

    Article  ADS  Google Scholar 

  233. Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry, 100, 13226–13239.

    Article  Google Scholar 

  234. Wang, Y., & Herron, N. (1991). Nanometer-sized semiconductor clusters–materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 95, 525–532.

    Article  Google Scholar 

  235. Bang, J., Yang, H., & Holloway, P. H. (2006). Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology, 17, 973–978.

    Article  ADS  Google Scholar 

  236. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., & Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical Reviews, 114, 9987–10043.

    Article  Google Scholar 

  237. Kamat, P. V. (2014). Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. Journal of Physical Chemistry C, 112, 18737–18753.

    Article  ADS  Google Scholar 

  238. Homola, J., Yeea, S. S., & Gauglitzb, G. (1999). Surface plasmon resonance sensors: Review. Sensors and Actuators B: Chemical, 54, 3–15.

    Article  Google Scholar 

  239. Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik, 330, 377–445.

    Article  ADS  MATH  Google Scholar 

  240. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry. B, 107, 668–677.

    Article  Google Scholar 

  241. Sosa, I. O., Noguez, C., & Barrera, R. C. (2003). Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry. B, 107, 6269–6275.

    Article  Google Scholar 

  242. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., & Bawendi, M. G. (1997). (CdSe) ZnS core − shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry. B, 101, 9463–9475.

    Article  Google Scholar 

  243. Anker, J. N., Paige Hall, W., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7, 442–453.

    Article  ADS  Google Scholar 

  244. Haes, A. J., & Van Duyne, R. P. (2002). A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance of triangular silver nanoparticles. Journal of the American Chemical Society, 124, 10596–10604.

    Article  Google Scholar 

  245. Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., & Yee, S. S. (1998). Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 14, 5636–5648.

    Article  Google Scholar 

  246. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288, 243–247.

    Article  ADS  Google Scholar 

  247. Ma, Y., Zhou, J., Zou, W., Jia, Z., Petti, L., & Mormile, P. (2014). Localized surface plasmon resonance and surface enhanced Raman scattering responces of Au@Ag core-shall nanorods with different thickness of Ag shell. Journal of Nanoscience and Nanotechnology, 14, 4245–4250.

    Article  Google Scholar 

  248. Csapo, E., Oszko, A., Varga, E., et al. (2012). Synthesis and characterization of Ag/Au alloy and core (Ag)-shell(Au) nanoparticles. Colloids and Surfaces A, Physicochemical and Enginnering Aspects, 415, 281–287.

    Google Scholar 

  249. El-Brolossy, T. A., Abdallah, T., Mohamed, M. B., et al. (2008). Shape and size dependence on the surface plasmon resonance of gold nanoparticles studied by photoacoustic techniques. The European Physical Journal: Special Topics, 153, 361–364.

    ADS  Google Scholar 

  250. Ringe, E., Zhang, J., Langille, M. R., et al. (2010). Effect of size, shape, composition, and support film on localized surface plasmon resonance frequency: A single particle approach applied to silver bipyramids and gold and silver nanocubes. In Proceedings of the material research society fall meeting, 1208.

    Google Scholar 

  251. Moskovits, M. (2005). Surface enhanced Raman spectroscopy: A brief retrospective. Journal of Raman Spectroscopy, 36, 485–496.

    Article  ADS  Google Scholar 

  252. Moore, C. B., Rison, W., Mathis, J., & Aulich, G. (2000). Lightning rod improvement studies. Journal of Applied Meteorology, 39, 593–609.

    Article  ADS  Google Scholar 

  253. Lee, J., Hua, B., Park, S., et al. (2014). Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale, 6, 616–623.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldassare Di Bartolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cesaria, M., Di Bartolo, B. (2017). Nanomaterials: Basic Concepts and Quantum Models. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics