Skip to main content

Terahertz Sensing at the Nanoscale

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

Although the terahertz frequency range covers wavelengths from around 30 μm to 3 mm, terahertz sensing can provide unique information on materials and processes occurring at much shorter length scales, even down to the nanometre range. New developments in the terahertz part of the spectrum are enabling unprecedented sub-wavelength resolution, novel devices for imaging, spectroscopy, sensing and telecommunications, new techniques for characterizing nano-materials and increased understanding of fundamental biological processes. Additionally, there are strong parallels between terahertz optics and nano-optics. After briefly describing techniques for the generation, detection and manipulation of terahertz radiation, this chapter will review recent developments in the terahertz sensing of nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preu, S., Döhler, G. H., Malzer, S., Wang, L. J., & Gossard, A. C. (2011). Tunable, continuous-wave terahertz photomixer sources and applications. Journal of Applied Physics, 109, 06130.

    Article  Google Scholar 

  2. Martin, D. H. (1982). Polarizing (Martin-Puplett) interferometric spectrometers for the near- and submillimeter spectra. In Infrared and millimeter waves (Systems and components, Vol. 6, pp. 66–149). New York: Academic.

    Google Scholar 

  3. Birch, J. R., & Parker, T. J. (1979). Dispersive fourier transform spectrometry. In K. J. Button (Ed.), Infrared and millimeter waves (Instrumentation, Vol. 2, pp. 137–271). Orlando: Academic.

    Google Scholar 

  4. Martin, D. H., & Bowen, J. W. (1993). Long-wave optics. IEEE Transactions on Microwave Theory and Techniques, 41(10), 1676–1690.

    Article  ADS  Google Scholar 

  5. Beard, M. C., Turner, G. M., & Schmuttenmaer, C. A. (2002). Terahertz spectroscopy. Journal of Physical Chemistry B, 106, 7146–7159.

    Article  Google Scholar 

  6. Joyce, H. J., Docherty, C. J., Gao, Q., Tan, H. H., Jagadish, C., Lloyd-Hughes, J., Herz, L. M., & Johnston, M. B. (2013). Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology, 24, 214006.

    Article  ADS  Google Scholar 

  7. Baxter, J. B., & Schmuttenmaer, C. A. (2006). Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. Journal of Physical Chemistry B, 110, 25229–25239.

    Article  Google Scholar 

  8. Lloyd-Hughes, J., & Jeon, T.-I. (2012). A review of the terahertz conductivity of bulk and nano-materials. Journal of Infrared Millimeter and Terahertz Waves, 33, 871–925.

    Article  Google Scholar 

  9. Jung, G. B., Myung, Y., Cho, Y. J., Sohn, Y. J., Jang, D. M., Kim, H. S., Lee, C.-W., Park, J., Maeng, I., Son, J.-H., & Kang, C. (2010). Terahertz spectroscopy of nanocrystal-carbon nanotube and -graphene oxide hybrid nanostructures. Journal of Physical Chemistry C, 114, 11258–11265.

    Article  Google Scholar 

  10. Parkinson, P., Joyce, H. J., Gao, Q., Tan, H. H., Zhang, X., Zou, J., Jagadish, C., Herz, L. M., & Johnston, M. B. (2009). Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Letters, 9, 3349–3353.

    Article  ADS  Google Scholar 

  11. Strait, J. H., George, P. A., Levendorf, M., Blood-Forsythe, M., Rana, F., & Park, J. (2009). Measurements of the carrier dynamics and terahertz response of oriented germanium nanowires using optical-pump terahertz-probe spectroscopy. Nano Letters, 9, 2967–2972.

    Article  ADS  Google Scholar 

  12. Leitner, D. M., Gruebele, M., & Havenith, M. (2008). Solvation dynamics of biomolecules: Modeling and terahertz experiments. HFSP Journal, 2, 314–323.

    Article  Google Scholar 

  13. Ebbinghaus, S., Kim, S. J., Heyden, M., Yu, X., Gruebele, M., Leitner, D. M., & Havenith, M. (2008). Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy. Journal of the American Chemical Society, 130, 2374–2375.

    Article  Google Scholar 

  14. Haring Bolivar, P., Nagel, M., Richter, F., Brucherseifer, M., Kurz, H., Bosserhoff, A., & Büttner, R. (2004). Label-free THz sensing of genetic sequences: Towards ‘THz biochips’. Philosophical Transactions of the Royal Society of London Series A, 362, 323–335.

    Article  ADS  Google Scholar 

  15. Debus, C. (2013). A high-sensitivity THz-sensing technology for DNA detection with split-ring resonator based biochips. PhD thesis, University of Siegen, Germany.

    Google Scholar 

  16. Mitrofanov, O., Lee, M., Hsu, J., Brener, I., Harel, R., Federici, J., Wynn, J., Pfeiffer, L., & West, K. (2001). Collection-mode near-field imaging with 0.5-THz pulses. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 600–607.

    Article  Google Scholar 

  17. TeraSpike, Protemics, GmbH, Otto-Blumenthal-Strasse 25, 52074 Aachen, Germany. www.protemics.com. Accessed 7 Oct 2016.

  18. Rusina, A., Durach, M., Nelson, K. A., & Stockman, M. I. (2008). Nanoconcentration of terahertz radiation in plasmonic waveguides. Optics Express, 16, 18576.

    Article  ADS  Google Scholar 

  19. Zhan, H., Mendis, R., & Mittleman, D. M. (2010). Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides. Optics Express, 18, 9643–9650.

    Article  ADS  Google Scholar 

  20. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J., & Hillenbrand, R. (2008). Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 8, 3766–3770.

    Article  ADS  Google Scholar 

  21. Ma, Y., Huang, M., Ryu, S., Bark, C. W., Eom, C.-B., Irvin, P., & Levy, J. (2013). Broadband terahertz generation and detection at 10 nm scale. Nano Letters, 13, 2884–2888.

    Article  ADS  Google Scholar 

  22. Cocker, T. L., Jelic, V., Gupta, M., Molesky, S. J., Burgess, J. A. J., De Los, R. G., Titova, L. V., Tsui, Y. Y., Freeman, M. R., & Hegmann, F. A. (2013). An ultrafast terahertz scanning tunnelling microscope. Nature Photonics, 7, 620–625.

    Article  ADS  Google Scholar 

  23. Park, H.-R., Ahn, K. J., Han, S., Bahk, Y.-M., Park, N., & Kim, D.-S. (2013). Colossal absorption of molecules inside single terahertz nanoantennas. Nano Letters, 13, 1782–1786.

    Article  ADS  Google Scholar 

  24. Balasubramaniam, S., & Kangasharju, J. (2013). Realizing the internet of nano things: Challenges, solutions, and applications. Computer, 46(2), 62–68.

    Article  Google Scholar 

  25. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1, 3–19.

    Article  Google Scholar 

  26. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications/Supplement – Part 2, 31(12), 685–694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bowen, J.W. (2017). Terahertz Sensing at the Nanoscale. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics