Skip to main content

Features, Principles and Development of Ferroelectric–Gate Field-Effect Transistors

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

Ferroelectric-gate field effect transistor (FeFET) memories are overviewed. The FeFET shows excellent features as an integrated memory such as nonvolatality, better scalability, higher read-write speeds, lower dissipation powers, higher tamper resistances and higher radioactivity tolerance. But, memory retention was the most critical problem for its practical realization. Mechanisms of degradation of the retention are discussed in metal-ferroelectric-insulator-semiconductor (MFIS) gate structure in which the insulator is inserted between the ferroelectric and the semiconductor to avoid interface damages suffered during the device preparation at high temperature. It is concluded from careful discussion that leakage currents through insulator-semiconductor and metal-ferroelectric junctions store charges in the interface between the ferroelectric and the insulator layers, which reduce apparent dielectric polarization and promote the degradation of the retention. Electronic property of the interfaces and the ferroelectric layer in the MFIS structure has been improved by nitrogen radical treatment and thermal annealing, and the retention of MFIS capacitance is shown to extend very much. Moreover, several kinds of improved MFIS FETs are introduced and the memory retention has been extended very much to be useful for the practical realization of excellent memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Moll, Y. Tarui, IEEE Trans. Electron Devices ED-10, 338 (1963)

    Google Scholar 

  2. R. Zuleeg, H.H. Wiede, Solid State Electr. 9, 657 (1966)

    Article  ADS  Google Scholar 

  3. S.S. Perlman, K.H. Ludewig, IEEE Trans. Electron Devices ED-14, 816 (1967)

    Google Scholar 

  4. J.H. McCuster, S.S. Perlman, IEEE Trans. Electron Devices ED-15, 182 (1968)

    Google Scholar 

  5. G.G. Teather, L. Young, Solid State Electr. 9, 527 (1968)

    Article  ADS  Google Scholar 

  6. J.C. Crawford, F.L. English, IEEE Trans. Electron Devices ED-16, 525 (1969)

    Google Scholar 

  7. S.-Y. Wu, IEEE Trans. Electron Devices ED-21, 499 (1974)

    Google Scholar 

  8. K. Sugibuchi, Y. Kurogi, N. Endo, J. Appl. Phys. 46, 2877 (1975)

    Article  ADS  Google Scholar 

  9. Y. Higuma, Y. Matsui, M. Okuyama, T. Nakagawa, Y. Hamakawa, in Proceedings of the 9th Conference on Solid State Devices, Tokyo (1977)

    Google Scholar 

  10. Y. Hamakawa, Y. Matsui, Y. Higuma, Y. Hamakawa, in Proceedings of IEEE IEDM Conference, Washington D.C. (1977)

    Google Scholar 

  11. Y. Matsui, Y.Higuma, M. Okuyama, T. Nakagawa, Y. Hamakawa, in Proceedings of the 1st Conference on Ferroelectric Material Applications, Kyoto (1977)

    Google Scholar 

  12. W.I. Kinney, W. Sheoherd, W. Miller, J. Evans, R. Womack, in Technical Digest of IEEE (IEDM, Washington, D.C., USA, Dec., 1987), p. 850

    Google Scholar 

  13. S.S. Eaton, D.B. Butler, M. Parris, D. Wilson, H. McNeillie, in Digest of Technical IEEE Papers of International Solid State Circuit Conference, San Francisco, USA, 31 Feb 1988, p. 130

    Google Scholar 

  14. J.F. Scott, Ferroelectric Memories. Springer Series on Advanced Microelectronics, vol. 3 (Springer, Berlin, 2000)

    Google Scholar 

  15. H. Ishiwara, M. okuyama, Y. Arimoto, Ferroelectric Random Access Memories. Topics in Applied Physics 93 (Springer, Berlin, 2004)

    Google Scholar 

  16. M. okuyama, Y. Ishibashi: Ferroelectric Thin Films. Topics in Applied Physics 98 (Springer, Berlin, 2005)

    Google Scholar 

  17. C.A.-P. Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)

    Google Scholar 

  18. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)

    Google Scholar 

  19. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys. 34, 5184 (1995)

    Article  ADS  Google Scholar 

  20. K. Takahashi, K. Aizawa, B.-E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218 (2005)

    Article  ADS  Google Scholar 

  21. M. Okuyama, M. Noda, Topics in Applied Physics, vol. 98, eds. by M. Okuyama, Y. Ishibashi (Springer, Berlin, 2005), p. 219

    Google Scholar 

  22. M. Okuyama, M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (2000) pp. 337–340

    Google Scholar 

  23. M. Okuyama, H. Sugiyama, T. Nakaiso, M. Noda, Integr. Ferroelectr. 34, 37 (2000)

    Article  Google Scholar 

  24. M. Okuyama, M. Takahashi, K. Kodama, T. Nakaiso, M. Noda, Mat. Res. Soc. Symp. Proc. 655, cc13.10.1 (2000)

    Google Scholar 

  25. M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 40, 2923 (2001)

    Article  ADS  Google Scholar 

  26. S.M. Sze, Physics of Semiconductor Devices, 2nd ed, Chap. 7 (A Wiley-Interscience Publication, New York, 1981), p. 403

    Google Scholar 

  27. S.L. Miller, P.J. McWhorter, J. Appl. Phys. 72, 5999 (1992)

    Article  ADS  Google Scholar 

  28. T. Ohmi, M. Morita, A. Teramoto, K. Makihara, K.S. Tseng, Appl. Phys. Lett. 60, 2126 (1992)

    Article  ADS  Google Scholar 

  29. L. Van Hai, T. Kanashima, M. Okuyama, INTECH, Ferroelectric Materials—Material Aspects, ed. by M. Lallart, Chap. 7 (2011), p. 129

    Google Scholar 

  30. L. Van Hai, T. Kanashima, M. Okuyam, Integr. Ferroelectr. 96, 27 (2008)

    Google Scholar 

  31. L. Van Hai, T. Kanashima, M. Okuyama, Integr. Ferroelectr. 84, 179 (2006)

    Google Scholar 

  32. S.-M. Yoon, H. Ishiwara, IEEE Trans. Electron Devices 48, 2002 (2001)

    Article  ADS  Google Scholar 

  33. S. Yamamoto, H.-S. Kim, H. Ishiwara, Jpn. J. Appl. Phys. 42, 2059 (2003)

    Article  ADS  Google Scholar 

  34. Y. Nakao, T. Nakamura, A. Kamisawa, H. Takasu, Integr. Ferroelectr. 6, 23 (1995)

    Article  Google Scholar 

  35. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Integr. Ferroelectr. 9, 179 (1995)

    Article  Google Scholar 

  36. Y. Fujimori, N. Izumi, T. Nakamura, A. Kamisawa, Jpn. J. Appl. Phys. 37, 5207 (1998)

    Article  ADS  Google Scholar 

  37. E. Tokumitsu, G. Fuji, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2125 (2000)

    Article  ADS  Google Scholar 

  38. T. Suzuki, E. Tokumitsu, Jpn. J. Appl. Phys. 41, 6886 (2002)

    Article  ADS  Google Scholar 

  39. S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369 (2004)

    Article  ADS  Google Scholar 

  40. K. Aizawa, B.-E. Park, Y. Kawashima, K. Takahashi, H. Ishiwara, Appl. Phys. Lett. 85, 3199 (2004)

    Article  ADS  Google Scholar 

  41. S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)

    Article  ADS  Google Scholar 

  42. M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)

    Article  ADS  Google Scholar 

  43. X. Zhang, K. Takeuchi, M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 51, 04DD01 (2012)

    Google Scholar 

  44. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, T. Mikolajick, ECS J. Solid State Sci. Technol. 2, N69 (2013)

    Article  Google Scholar 

  45. J. Muller, T.S. Boscke, U. Schroeder, R. Hoffman, T. Mikolajick, IEEE Electron. Device Lett. 33, 185 (2012)

    Google Scholar 

  46. R.C.G. Naber, C. Tanase, P.W.M. Blom, G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, D.M. De Leeuw, Nat. Mater. 4, 243 (2005)

    Article  ADS  Google Scholar 

  47. G.G. Lee, B.E. Park, J. Kor. Phys. Soc. 56, 1484 (2010)

    Article  Google Scholar 

  48. T. Watanabe, H. Miyashita, T. Kanashima, M. Okuyama, Jpn. J. Appl. Phys. 49, 04DD14 (2010)

    Google Scholar 

  49. S.-H. Noh, W. Choi, M.S. Oh, S, Jang, E. Kim, Appl. Phys. Lett. 90(25), 253504 (2007)

    Google Scholar 

  50. Y. Kato, Y. Kaneko, H. Tanaka, Y. Shimada, Jpn. J. Appl. Phys. 47, 2719 (2008)

    Article  ADS  Google Scholar 

  51. T. Fukushima, T. Yoshimura, K. Masuko, A. Ashida, N. Fujimura, Jpn. J. Appl. Phys. 47, 8874 (2008)

    Article  ADS  Google Scholar 

  52. E. Tokumitsu, M. Senoo, T. Miyasako, Microelectr. Eng. 80(Suppl.), 305 (2005)

    Google Scholar 

  53. S.-M. Yoon, S.-H. Yang, S.-W. Jung, E. Tokumitsu, H. Ishiwara, Appl. Phys. Lett. 96, 232903 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Mitsue Takahashi and Profs. Minoru Noda and Takeshi Kanashima for helping this work, and Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Okuyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Okuyama, M. (2016). Features, Principles and Development of Ferroelectric–Gate Field-Effect Transistors. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0841-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0841-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0839-3

  • Online ISBN: 978-94-024-0841-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics