Skip to main content

Identification of Mutagenized Plant Populations

  • Chapter
Current Technologies in Plant Molecular Breeding

Abstract

The recent availability of large-scale genomic data has allowed researchers to begin deciphering plant gene function. Plant mutagenesis is a powerful tool for the identification and characterization of the function of specific genes linked to phenotypes. TILLING (Targeting Induced Local Lesions IN Genomes) is a general reverse-genetics tool that combines traditional mutagenesis with high-throughput methods of mutation discovery among mutagenized populations. The aim of TILLING is to identify mutagenized genotypes that affect specific phenotypes. Securing genetic diversity and selecting efficient progeny are the most important factors in plant breeding. During the evolutionary process, the gene pool has skewed towards a direction that is favorable to humans and some essential alleles may have been lost during the selection processes. Genome editing using an engineered nuclease is a target-directed, controlled, and predictable approach that can provide a genetically diverse gene pool and shorten cultivar development time. Depending on engineered nucleases and plant species types, the mutagenesis rate and outcomes show significant differences, indicating that nuclease types and characteristics, efficient target mutagenesis, construction and delivery of the nuclease, selection and verification of the mutants, and off-target mutagenesis need to be considered. Genomic sequence variations generated by chemical and/or physical mutagenesis can be strongly related to changes in phenotype. Haplotype analysis allows plant breeding knowledge to be expanded and can help improve understanding of diversity at the genomic sequence level. Experiments using SNP haplotypes can provide insights into plant evolution, and can contribute to phenotypic analysis, and expectation and characterization of mutagenized plant phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso JM, Stepanova AN, Solano R et al (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A et al (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM et al (2013) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709

    Article  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  CAS  PubMed  Google Scholar 

  • Carroll D, Morton JJ, Beumer KJ et al (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chun JB, Ha BK, Jang DS et al (2012) Identification of mutations in OASA1 gene from a gamma-irradiated rice mutant population. Plant Breed 131:276–281

    Article  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Cornu TI, Thibodeau-Beganny S, Guhl E et al (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases breakthrough technologies. Plant Physiol 156:466–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Pater S, Neuteboom LW, Pinas JE et al (2009) ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7:821–835

    Article  PubMed  Google Scholar 

  • Dong C, Dalton-Morgan J, Vincent K et al (2009) A modified TILLING method for wheat breeding. Plant Gen 2:39–47

    Article  CAS  Google Scholar 

  • Even-Faitelson L, Samach A, Melamed-Bessudo C et al (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68:929–937

    Article  CAS  PubMed  Google Scholar 

  • Gady AL, Hermans FW, Van de Wal MH et al (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Galeano CH, Gomez M, Rodriguez LM et al (2009) CEL I nuclease digestion for SNP discovery and marker development in common bean (L.). Crop Sci 49:381–394

    Article  CAS  Google Scholar 

  • Gasiunas G, Siksynys V (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol 21:562–567

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC et al (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Hegyi J, Schwartz RA, Hegyi V (2004) Pellagra: dermatitis, dementia, and diarrhea. Int J Dermatol 43:1–5

    Article  PubMed  Google Scholar 

  • Hoffmann D, Jiang Q, Men A et al (2007) Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus. J Plant Physiol 164:460–469

    Article  CAS  PubMed  Google Scholar 

  • Hoshaw JP, Unger-Wallace E, Zhang F et al (2010) A transient assay for monitoring zinc finger nuclease activity at endogenous plant gene targets. Methods Mol Biol 649:299–313

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  Google Scholar 

  • Hurt JA, Thibodeau SA, Hirsh AS et al (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci USA 100:12271–12276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kadaru SB, Yadav AS, Fjellstrom RG et al (2006) Alternative Ecotilling protocol for rapid, cost-effective single-nucleotide polymorphism discovery and genotyping in rice (Oryza sativa L.). Plant Mol Biol Rep 24:3–22

    Article  CAS  Google Scholar 

  • Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newslett 15:150–152

    Google Scholar 

  • Kim DS, Lee IS, Jang CS et al (2004) Development of AFLP-derived STS markers for the selection of 5-methyltryptophan-resistant rice mutants. Plant Cell Rep 23:71–80

    CAS  PubMed  Google Scholar 

  • Kim HJ, Um EJ, Cho SR et al (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 11:941–943

    Article  Google Scholar 

  • Kisaka H, Kisaka M, Kameya T (1996) Characterization of interfamilial somatic hybrids between 5-methyltryptophan resistant rice (Oryza sativa L.) and 5MT-sensitive carrot (Daucuscarota L.); expression of resistance to 5MT by the somatic hybrids. Breed Sci 46:221–226

    CAS  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 337–357

    Chapter  Google Scholar 

  • Kurowska M, Daszkowska-Golec A, Gruszka D et al (2011) TILLING – a shortcut in functional genomics. J Appl Genet 52:371–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis‐based reverse genetics system for plants. Plant J 27:235–242

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lassner M, Zhang Y (2002) Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics 3:158–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D et al (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lochlainn SÓ, Amoah S, Graham NS et al (2011) High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 7:1–9

    Article  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Li L (2011) TALE nucleases and next generation GM crops. GM Crops 2:99–103

    Article  PubMed  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandell JG, Barbas CF (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marton I, Zuker A, Shklarman E et al (2010) Non-transgenic genome modification in plant cells. Plant Physiol 154:1079–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  CAS  PubMed  Google Scholar 

  • Men AE, Laniya TS, Searle IR et al (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett 1:147–155

    Article  CAS  Google Scholar 

  • Nieto C, Piron F, Dalmais M et al (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Oldroyd GE, Long SR (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in nod factor signaling. Plant Physiol 131:1027–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oleykowski CA, Mullins CRB, Godwin AK et al (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petolino JF, Worden A, Curlee K et al (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628

    Article  CAS  PubMed  Google Scholar 

  • Pruett-Miller SM, Reading DW, Porter SN et al (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5:e1000376

    Article  PubMed Central  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Wen J, Chen R et al (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saika H, Oikawa A, Matsuda F et al (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Shirasawa K, Takahashi Y et al (2006) Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using Brassica petiole extract. Breed Sci 56:179–183

    Article  CAS  Google Scholar 

  • Searle IR, Men AE, Laniya TS et al (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Chen K et al (2013) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6:1365–1368. doi:10.1093/mp/sss162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D et al (2004) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T et al (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Burtner C, Comai L et al (2004a) Mismatch cleavage by single-strand specific nuclease. Nucleic Acids Res 32:2632–2641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C et al (2004b) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Zerr T, Comai L et al (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57:747–757

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tzfira T, Weinthal D, Marton I et al (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10:373–389

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun J, Liu D et al (2008) Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele. J Cereal Sci 48:836–842

    Article  CAS  Google Scholar 

  • Wang TL, Uauy C, Robson F et al (2012) TILLING in extremis. Plant Biotechnol J 10:761–772

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Fetch T, Nirmala J et al (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113:847–855

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lu Y, Yuan Y et al (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zinc finger consortium. www.zincfingers.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sub Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, GJ., Kim, DG., Kwon, SJ., Choi, HI., Kim, D.S. (2015). Identification of Mutagenized Plant Populations. In: Koh, HJ., Kwon, SY., Thomson, M. (eds) Current Technologies in Plant Molecular Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9996-6_7

Download citation

Publish with us

Policies and ethics