Skip to main content

QTL Identification

  • Chapter
  • 2618 Accesses

Abstract

Many important agronomic traits, such as crop yield and stress tolerance, are controlled by polygenes, each with subtle effects and influenced by the environment. Such characteristics are referred to as quantitative traits and the segregating loci as quantitative trait loci (QTLs). As quantitative traits do not segregate into discrete classes, one cannot use standard Mendelian genetic practices to study them. In the past 30 years, a new approach to understanding the genetics of quantitative traits has developed, using molecular linkage maps and populations with linkage disequilibrium. To map and tag a QTL, one needs a segregating population(s) in which linkage disequilibrium exists, a set of molecular markers, and statistical tools. Many plant species are ideally suited for quantitative trait analysis because they have short generation times and many progeny, and controlled crosses can be made in which linkage disequilibrium is known. Annual, self-pollinated species (e.g., Rice, Arabidopsis, Tomato) are best suited for QTL studies. More problematic things are outcrossing perennial species (e.g., many tree species and most animal species), in which controlled crosses are either not possible or impractical, and generation times are longer. New methods (often referred to as association genetics) are emerging that allow researchers to locate and characterize QTLs in natural populations using empirical knowledge of linkage disequilibrium and high-throughput DNA marker analysis. The importance of meta-quantitative trait loci (MQTLs) is increasing because of their role in identifying genes linked to QTL regions. They also aid marker-assisted selection (MAS) in association with statistical analyses. Recently, integrated data for use in meta-analyses of QTLs have become available in plant genome databases and have been analyzed using QTL/microarray, expression-QTL (eQTL), and MQTL methods. In this section, the requirements and methods for identifying and characterizing QTLs using the traditional approach of controlled crosses will be discussed. The information on QTL mapping will be used in MAS in plant breeding. We also discuss the current status of MQTL research and describe the general procedures using a case study to identify MQTL genes related to abiotic stresses in rice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andaya VC, Mackill DJ (2003a) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003b) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet 106:1084–1090

    CAS  PubMed  Google Scholar 

  • Arbilly M, Pisante A, Devor M et al (2006) An integrative approach for the identification of quantitative trait loci. Anim Genet 37:7–9

    Article  CAS  PubMed  Google Scholar 

  • Arcade A, Labourdette A, Falque M et al (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Ballini E, Morel JB, Droc G et al (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621

    Article  Google Scholar 

  • Brem RB, Yvert G, Clinton R et al (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  CAS  PubMed  Google Scholar 

  • Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Virlon B, Moreau L et al (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung VG, Conlin LK, Weber TM et al (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 33:422–425

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F et al (2009) Rice root genetic architecture: meta-analysis from a QTL database improves resolution to a few candidate genes. Rice 2:115–128

    Article  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Drake TA, Schadt EE, Lusis AJ (2006) Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome 17:466–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavidia I, Perez-Bermudez P, Seitz HU (2002) Cloning and expression of two novel aldo-keto reductases from Digitalis purpurea leaves. Eur J Biochem/FEBS 269:2842–2850

    Google Scholar 

  • Glass G (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8

    Article  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gyenis L, Yun SJ, Smith KP et al (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723

    Article  CAS  PubMed  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O et al (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  CAS  PubMed  Google Scholar 

  • Hedges L, Olkin I (1985) Statistical methods for meta-analysis. Academic, Orlando

    Google Scholar 

  • Hegedus A, Erdei S, Janda T et al (2004) Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166:1329–1333

    Article  CAS  Google Scholar 

  • Hemamalini GS, Shashidha HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78

    Article  CAS  Google Scholar 

  • Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jaiswal P, Ni J, Yap I et al (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34:D717–D723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B et al (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SP, Chen TH (1993) Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol 101:1089–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, Ahn JH, Cha YS et al (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21:192–196

    CAS  PubMed  Google Scholar 

  • Lee HS, Sasaki K, Higashitani A et al (2012) Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.). Rice 5:13

    Article  Google Scholar 

  • Li J, Burmeister M (2005) Genetical genomics: combining genetics with gene expression analysis. Hum Mol Genet 14(Spec No. 2):R163–R169

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li L, Yang X et al (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    Article  PubMed Central  PubMed  Google Scholar 

  • Li WT, Liu CJ, Liu YX et al (2013) Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189:31–49

    Article  CAS  Google Scholar 

  • Liang C, Jaiswal P, Hebbard C et al (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36:D947–D953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Assoc, Sunderland

    Google Scholar 

  • Marone D, Russo MA, Laido G et al (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14:562

    Google Scholar 

  • Matsuda H, Taniguchi Y, Iwaisaki H (2012) QTL/microarray approach using pathway information. Algorithm Mol Biol 7:1

    Google Scholar 

  • Matthews DB, Bhave SV, Belknap JK et al (2005) Complex genetics of interactions of alcohol and CNS function and behavior. Alcohol Clin Exp Res 29:1706–1719

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S et al (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Pujar A, Youens-Clark K et al (2009) Gramene QTL database: development, content and applications. Database (Oxford) 2009:bap005

    Google Scholar 

  • Oberschall A, Deak M, Torok K et al (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J Cell Mol Biol 24:437–446

    Article  CAS  Google Scholar 

  • Qi ZM, Sun YN, Wu QO et al (2011) A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 91:221–230

    Article  CAS  Google Scholar 

  • Rosenberg MS, Garrett KA, Su Z et al (2004) Meta-analysis in plant pathology: synthesizing research results. Phytopathology 94:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Said JI, Lin Z, Zhang X et al (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schadt EE, Monks SA, Drake TA et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  • Song XJ et al (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swamy BPM, Vikram P, Dixit S et al (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Qian Q, Zeng DL et al (2002) Analysis of gene loci and epistasis for drought tolerance in seedling stage of rice (Oryza sativa L.). Acta Genet Sin 29:235–240

    CAS  PubMed  Google Scholar 

  • Verdugo RA, Farber CR, Warden CH et al (2010) Serious limitations of the QTL/Microarray approach for QTL gene discovery. BMC Biol 8:96

    Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49

    Article  Google Scholar 

  • Wang X, Wang H, Long Y et al (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS One 8, e80569

    Article  PubMed Central  PubMed  Google Scholar 

  • Ware DH, Jaiswal P, Ni J et al (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci U S A 99:14903–14906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wissuwa M, Wegner J, Ae N et al (2002) Substitution mapping of Pub1: a major QLT increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Xiang K, Zhang ZM, Reid LM et al (2010) A meta-analysis of Qtl associated with ear rot resistance in maize. Maydica 55:281–290

    Google Scholar 

  • Yvert G, Brem RB, Whittle J et al (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zheng HG, Aarti A et al (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Nag Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, H.S., Hwang, SG., Jang, C.S., Ahn, S.N. (2015). QTL Identification. In: Koh, HJ., Kwon, SY., Thomson, M. (eds) Current Technologies in Plant Molecular Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9996-6_3

Download citation

Publish with us

Policies and ethics