Skip to main content

Part of the book series: KAIST Research Series ((KAISTRS))

  • 2248 Accesses

Abstract

This chapter presents the analysis and designs of efficient energy harvesting circuits interfacing two example energy generators: thermoelectric generator and piezoelectric generator. First, the key characteristics of these energy generators are described and the design criteria for the optimal performance of the basic energy harvester circuits are derived. For instance, the condition to minimize the start-up voltage of a blocking oscillator-based thermoelectric energy harvester and the condition to maximize the energy transfer efficiency of a full-bridge rectifier-based piezoelectric energy harvester are derived. Second, new circuit techniques that can overcome the limitations of the basic energy harvester circuits are introduced: the dual-path rectifier, bias-flip rectifier, and switched capacitor array. These circuit techniques either reduce energy losses, converting the voltage into a suitable range, or maintain impedance matching for the highest energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damaschke JM (1997) Design of a low-input voltage converter for thermoelectric generator. IEEE Trans Ind Appl 33(5):1203–1207

    Google Scholar 

  2. Im J-P et al (2012) A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. In: IEEE Int’l solid-state circuits conference (ISSCC) digital technology papers, pp 104–106, Feb 2012

    Google Scholar 

  3. Ramadass YK et al (2011) A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J Solid-State Circuits 46(1):333–341

    Google Scholar 

  4. Bandyopadhyay S et al (2012) Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE J Solid-State Circuits 47(9):2199–2215

    Google Scholar 

  5. Lim W et al (2013) A 5 V 33-kHz, 0.7-µW pulse generation circuit for ultra-low-power boost charging energy harvesters. IEEE Asian Solid-State Circuits Conference (A-SSCC), pp 449–452, Nov 2013

    Google Scholar 

  6. Paradiso JA, Feldmeier M (2001) A compact, wireless, self-powered pushbutton controller. In: Proceedings of the Ubicomp 2001: Ubiquitous Computing, Oct 2001

    Google Scholar 

  7. Tan YK et al (2006) Energy harvesting using piezoelectric igniter for self-powered radio frequency wireless sensors. In: Proceedings of IEEE Int’l conference on industrial technology, Dec 2006

    Google Scholar 

  8. Ottman G et al (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5):669–676

    Google Scholar 

  9. Khaligh A et al (2010) Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans Industr Electron 57(3):850–860

    Google Scholar 

  10. Yang et al (2014) Maximum energy transfer condition for piezoelectric energy harvesters with single pulsed vibration inputs. IET Electron Lett 50(8):629–631

    Google Scholar 

  11. Yang Y, Tang L (2009) Equivalent circuit modeling of piezoelectric energy harvesters. J Intell Mater Syst Struct 20(18):2223–2235

    Google Scholar 

  12. Ramadass YK, Chandrakasan AP (2009) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J of Solid-State Circuits 45(1):189–204

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeha Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, J., Park, MJ., Yang, J., Lim, W. (2016). Low-Power Circuit Techniques for Efficient Energy Harvesting. In: Kyung, CM. (eds) Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9990-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9990-4_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9989-8

  • Online ISBN: 978-94-017-9990-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics