Skip to main content

Reconfigurable Photovoltaic Array Systems for Adaptive and Fault-Tolerant Energy Harvesting

  • Chapter
  • First Online:
Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting

Part of the book series: KAIST Research Series ((KAISTRS))

Abstract

This chapter introduces a reconfigurable photovoltaic (PV) cell array for adaptive and fault-tolerant energy harvesting in view of component modeling, architectures, properties, and reconfigurable algorithms for partial shading and fault tolerance. On top of traditional PV cell array-based energy harvesting research, the dynamically reconfigurable PV cell array gives additional significant benefits in both efficiency and cost. This is a representative example of how electronics design automation contributes to various problems in other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee W, Kim Y, Wang Y, Chang N, Pedram M (2011) Versatile high-fidelity photovoltaic module emulation system. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED)

    Google Scholar 

  2. Choi Y, Chang N, Kim T (2007) DC–DC converter-aware power management for low-power embedded systems. IEEE Trans Comput Aided Des Integr Circ Syst 26(8):1367–1381

    Article  Google Scholar 

  3. Wang Y, Kim Y, Xie Q, Chang N, Pedram M (2011) Charge migration efficiency optimization in hybrid electrical energy storage (HEES) systems. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED)

    Google Scholar 

  4. Hohm DP, Ropp ME (2003) Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl 11(1):47–62

    Article  Google Scholar 

  5. Esram T, Chapman P (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energ Convers 22(2):439–449

    Article  Google Scholar 

  6. Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energ 4(1):89–98

    Article  Google Scholar 

  7. Kim Y, Wang Y, Chang N, Pedram M (2010) Maximum power transfer tracking for a photovoltaic-supercapacitor energy system. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 307–312

    Google Scholar 

  8. Shao H, Tsui C-Y, Ki W-H (2009) The design of a micro power management system for applications using photovoltaic cells with the maximum output power control. IEEE Trans Very Large Scale Integr VLSI Syst 17(8):1138–1142

    Article  Google Scholar 

  9. Shao H, Tsui C-Y, Ki W-H (2010) Maximizing the harvested energy for micro-power applications through efficient MPPT and PMU design. In: Proceedings of the Asia and South Pacific design automation conference (ASP-DAC), pp 75–80

    Google Scholar 

  10. Lu C, Park SP, Raghunathan V, Roy K (2010) Efficient power conversion for ultra low voltage micro scale energy transducers. In: Proceedings of the conference on design, automation and test in Europe (DATE), pp 1602–1607

    Google Scholar 

  11. Kim S, No K-S, Chou P (2011) Design and performance analysis of supercapacitor charging circuits for wireless sensor nodes. IEEE J Emerg Sel Top Circ Syst (JETCAS) 1(3):391–402

    Article  Google Scholar 

  12. Kim S, Chou P (2012) Size and topology optimization for supercapacitor-based sub-watt energy harvesters. IEEE Trans Power Electron 28(4):2068–2080

    Google Scholar 

  13. Mungan ES, Lu C, Raghunathan V, Roy K (2012) Modeling, design and cross-layer optimization of polysilicon solar cell based micro-scale energy harvesting systems. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 123–128

    Google Scholar 

  14. Sulaiman SA, Hussain H, Leh NN, Razali MSI (2011) Effects of dust on the performance of PV panels. World Acad Sci Eng Technol 58:588–593

    Google Scholar 

  15. Swaleh MS, Green MA (1982) Effect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules. Sol Cells 5:183–198

    Google Scholar 

  16. Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Industr Electron 55:1689–1698

    Google Scholar 

  17. Nguyen TL, Low K (2010) A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans Industr Electron 57(10):345634

    Google Scholar 

  18. Nguyen D, Lehman B (2008) An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans Industr Electron 55(7):2644–2654

    Google Scholar 

  19. Velasco-Quesada G (2009) Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans Industr Electron 56(11):4319–4331

    Google Scholar 

  20. Chaaban MA (2010) Adaptive photovoltaic system. In: Proceedings of the annual conference on IEEE industrial electronics society (IECON)

    Google Scholar 

  21. Kim Y, Park S, Wang Y, Xie Q, Chang N, Poncino M, Pedram M (2011) Balanced reconfiguration of storage banks in a hybrid electrical energy storage system. In: Proceedings of the international conference on computer-aided design (ICCAD), pp 624–631

    Google Scholar 

  22. Wang Y, Lin X, Kim Y, Chang N, Pedram M (2014) Architecture and control algorithms for combating partial shading in photovoltaic systems. IEEE Trans Comput Aided Des 33(4):917–930

    Google Scholar 

  23. Lin X, Wang Y, Pedram M, Kim J, Chang N (2014) Designing fault-tolerant photovoltaic systems. IEEE Des Test 31(3):76–84

    Article  Google Scholar 

  24. Wang C, Chang N, Kim Y, Park S, Liu Y, Lee HG, Luo R, Yang H (2014) Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor. In: Proceedings of the Asia and South Pacific design automation conference (ASP-DAC), pp 379–384

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naehyuck Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chang, N., Pedram, M., Lee, H.G., Wang, Y., Kim, Y. (2016). Reconfigurable Photovoltaic Array Systems for Adaptive and Fault-Tolerant Energy Harvesting. In: Kyung, CM. (eds) Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9990-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9990-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9989-8

  • Online ISBN: 978-94-017-9990-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics