Skip to main content

Energy Harvesting from the Human Body and Powering up Implant Devices

  • Chapter
  • First Online:
Book cover Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting

Part of the book series: KAIST Research Series ((KAISTRS))

Abstract

This article reviews research activities at the system level on (i) energy harvesting with wearable devices from the human body and (ii) powering up implant devices. The first part reviews wearable devices to harvest energy from the human body for biomedical and portable devices. Harvestable human body energy sources can be classified into two categories, voluntary and involuntary. Voluntary sources are capable of providing high power levels, up to several watts, but are only available when the wearer is active. Involuntary sources are constantly available, but provide much smaller amounts of energy, of the order of milliwatts. The latter part of the article reviews research activities to power up devices implanted in the human body. There are two approaches to power up implant devices. The first approach is to harvest energy from the body or ambient sources. The energy sources are essentially limited to kinetic energy of the body, body heat, and solar. The second approach is to transmit power to implant devices wirelessly. The power level available to implanted devices through harvesting or power transmission is small, often of the order of microwatts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei X, Liu J (2008) Power sources and electrical recharging strategies for implantable medical devices. Front Energy Power Eng Chin 2:1–13

    Article  Google Scholar 

  2. Verma NK, Singla P, Roy A (2012) Energy harvesting by foot-propelled battery charger using shoe-model. Adv Mater Res 488–489:1268–1273

    Article  Google Scholar 

  3. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42

    Article  Google Scholar 

  4. Orecchini G, Yang L, Tentzeris MM, Roselli L (2011) Wearable battery-free active paper printed RFID tag with human-energy scavenger. In: Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, pp 1–4

    Google Scholar 

  5. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Second International Symposium on Wearable Computers, Digest of Papers, pp 132–139

    Google Scholar 

  6. Zeng P, Chen H, Yang Z, Khaligh A (2011) Unconventional wearable energy harvesting from human horizontal foot motion. In: Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pp 258–264

    Google Scholar 

  7. Stamenkovic I, Milivojevic N, Zheng C, Khaligh A (2010) Three phase linear permanent magnet energy scavenger based on foot horizontal motion. In: Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, pp 2245–2250

    Google Scholar 

  8. Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD (2008) Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864):807–810

    Article  Google Scholar 

  9. Luciano V, Sardini E, Serpelloni M, Baronio G (2012) Analysis of an electromechanical generator implanted in a human total knee prosthesis. In: Sensors Applications Symposium (SAS), 2012 IEEE, pp 1–5

    Google Scholar 

  10. Luciano V, Sardini E, Serpelloni M (2014) An Electromechanical generator implanted in human total knee prosthesis. In: Baldini F, D’Amico A, Natale CD, Siciliano P, Seeber R, Stefano LD, Bizzarri R, Andò B (eds) Sensors. Springer, New York, pp 25–30

    Google Scholar 

  11. Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation. Smart Mater Struct 20(5):055007

    Article  Google Scholar 

  12. Lai H, Tan CA, Xu Y (2011) Dielectric elastomer energy harvesting and its application to human walking. ASME Conference Proceedings 2011(54884):601–607

    Google Scholar 

  13. Bowers BJ, Arnold DP (2009) Spherical, rolling magnet generators for passive energy harvesting from human motion. J Micromech Microeng 19(9):094008

    Article  Google Scholar 

  14. Sun K, Liu GQ, Xu XY (2011) No-Load Analysis of Permanent Magnet Spring Nonlinear Resonant Generator for Human Motion Energy Harvesting. Appl Mech Mater 130–134:2778–2782

    Article  Google Scholar 

  15. Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators, A 147(1):248–253

    Article  Google Scholar 

  16. Fujita T, Onishi T, Fujii K, Kanda K, Maenaka K, Higuchi K (2012) Evaluation of the human vibration for autonomous power source. In: World Automation Congress (WAC), pp 1–4

    Google Scholar 

  17. Yang B, Yun K-S (2011) Efficient energy harvesting from human motion using wearable piezoelectric shell structures. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pp 2646–2649

    Google Scholar 

  18. Renaud M, Sterken T, Fiorini P, Puers R, Baert K, van Hoof C (2005) Scavenging energy from human body: design of a piezoelectric transducer. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers, TRANSDUCERS ’05, vol 1, pp 784–787

    Google Scholar 

  19. Renaud M, Fiorini P, van Schaijk R, van Hoof C (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18(3):035001

    Article  Google Scholar 

  20. Yang R, Qin Y, Li C, Zhu G, Wang ZL (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205

    Article  Google Scholar 

  21. Padasdao B, Boric-Lubecke O (2011) Respiratory rate detection using a wearable electromagnetic generator. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 3217–3220

    Google Scholar 

  22. Shahhaidar E, Boric-Lubecke O, Ghorbani R, Wolfe M (2011) Electromagnetic generator: as respiratory effort energy harvester. In: IEEE Power and Energy Conference at Illinois (PECI), pp 1–4

    Google Scholar 

  23. Wang Z, Leonov V, Fiorini P, Van Hoof C (2007) Micromachined thermopiles for energy scavenging on human body. In: Solid-State Sensors, Actuators and Microsystems Conference, 2007, TRANSDUCERS 2007, International, pp 911–914

    Google Scholar 

  24. Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A 156(1):95–102

    Article  Google Scholar 

  25. Jung S, Lauterbach C, Strasser M, Weber W (2003) Enabling technologies for disappearing electronics in smart textiles. In: IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, vol 1, pp 386–387

    Google Scholar 

  26. Jo SE, Kim MK, Kim MS, Kim YJ (2012) Flexible thermoelectric generator for human body heat energy harvesting. Electron Lett 48(16):1013–1015

    Article  Google Scholar 

  27. Koplow M, Chen A, Steingart D, Wright PK, Evans JW (2008) Thick film thermoelectric energy harvesting systems for biomedical applications. In: 5th International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS), pp 322–325

    Google Scholar 

  28. Zhang F, Zhang Y, Silver J, Shakhsheer Y, Nagaraju M, Klinefelter A, Pandey J, Boley J, Carlson E, Shrivastava A, Otis B, Calhoun B (2012) A batteryless 19 µW MICS/ISM-band energy harvesting body area sensor node SoC. In: IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, pp 298–300

    Google Scholar 

  29. Ramadass YK, Chandrakasan AP (2011) A Battery-Less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J Solid-State Circuits 46(1):333–341

    Article  Google Scholar 

  30. Leonov V (2013) Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens J 13(6):2284–2291

    Article  MATH  Google Scholar 

  31. Platt SR, Farritor S, Haider H (2005) On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans Mechatronics 10(2):240–252

    Article  Google Scholar 

  32. Platt SR, Farritor S, Garvin K, Haider H (2005) The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans Mechatronics 10(4):455–461

    Article  Google Scholar 

  33. Almouahed S, Gouriou M, Hamitiouche C, Stindel E, Roux C (2011) The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking. IEEE Trans Mechatron 16(5):799–807

    Article  Google Scholar 

  34. Almouahed S, Gouriou M, Hamitiouche C, Stindel E, Roux C (2011) Design and evaluation of instrumented smart knee implant. IEEE Trans Biomed Eng 58(4):971–982

    Article  Google Scholar 

  35. Chen H, Liu M, Jia C, Wang Z (2009) Power harvesting using PZT ceramics embedded in orthopedic implants. IEEE Trans Ultrason Ferroelectr Freq Control 56(9):2010–2014

    Article  Google Scholar 

  36. Luciano V, Sardini E, Serpelloni M, Baronio G (2014) An energy harvesting converter to power sensorized total human knee prosthsis. J IOPscience Meas Sci Technol 25(2)

    Google Scholar 

  37. Nasiri A, Zabalawi SA, Jeutter DC (2011) A linear permanent magnet generator for powering implanted electronic devices. IEEE Trans Power Electon 26(1):192–199

    Article  Google Scholar 

  38. Morais R, Silva NM, Santos PM, Frias CM, Ferreira JAF, Ramos AM, Simoes JAO, Baptista JMR, Reis MC (2011) Double permanent magnet vibration power generator for smart hip prosthesis. J Sens Actuators Phys 172(1):259–268

    Article  Google Scholar 

  39. Deterre M, Boutaud R, Dalmolin R, Bosseau S, Chaillout JJ, Lefeuvre E, Gergram ED (2011) Energy harvesting system for cardiac implant applications. In: Proceeding of Design, Test, Integration and Packaging of MEMS (DTIP), pp 387–391

    Google Scholar 

  40. Deterre M, Lefeuvre E, Zhu Y, Woytasik M, Boutaud B, Molin RD (2014) Micro blood pressure energy harvester for intracardiac pacemaker. J Microelectromech Syst 23(3):651–660

    Article  Google Scholar 

  41. Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. Artif Organs 5:239–245

    Article  Google Scholar 

  42. Potkat JA, Brooks K (2008) An arterial cuff energy scavenger for implanted microsystems. In: Proceedings of Bioinformatics and Biomedical Engineering (ICBBE), pp 1580–1583

    Google Scholar 

  43. Lewandowski BE, Kilgore KL, Gustafson KJ (2007) Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann Biomed Eng 35(4):631–641

    Article  MATH  Google Scholar 

  44. Yang Y, Wei X, Liu J (2007) Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D Appl Phys 40:5790–5800

    Article  MATH  Google Scholar 

  45. Nagel JA, Sieber I, Gengenbach U, Guth H, Bretthauer G, Guthoff RF (2010) Investigation of a thermoelectric power supply for the artificial accommodation system. In: Proceeding of Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp 1–5

    Google Scholar 

  46. Kerzenmacher S, Ducre J, Zengerle R, Stetten FV (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182(1):1–17

    Article  Google Scholar 

  47. Bandyopadhyay S, Mercier PP, Lysaght AC, Stankovic KM, Chandrakasan AP (2014) A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants. IEEE J Solid-State Circuits 49(12):2812–2824

    Article  Google Scholar 

  48. Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: Proceeding of IEEE Engineering in Medicine and Biology Society (EMBC), pp 2874–2877

    Google Scholar 

  49. Ayazian S, Akhavan VA, Soenen E, Hassibi A (2012) A photovoltaic-driven and energy-autonomous CMOS implantable sensor. IEEE Trans Biomed Circuits Syst 6(4):336–343

    Article  Google Scholar 

  50. Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Biomed Circuits Syst 52(12):2605–2613

    Article  Google Scholar 

  51. Lenaerts B, Puers R (2007) An inductive power link for a wireless endoscope. Biosens Bioelectron 22(7):1390–1395

    Article  Google Scholar 

  52. Niu Q, Wang L, Dong T, Yang H (2009) Application of MEMS-based energy harvester for artificial heart wireless energy transmission. In: Proceeding of Computing, Communication, Control, and Management (CCCM), pp 38–41

    Google Scholar 

  53. Cao H, Landge V, Tata U, Seo Y, Rao S, Tand S et al (2012) An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans Biomed Eng 59(11):3131–3139

    Article  Google Scholar 

  54. Faul A, Turner M, Naber J (2011) Implantable wireless microsystems for the measurement of intraocular pressure. In: Proceeding of IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Aug 2011, pp 1–4

    Google Scholar 

  55. Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optical rechargeable lithium battery. IEEE Trans Biomed Eng 48(7):830–833

    Article  Google Scholar 

  56. Ozeri S, Shmilovitz D (2010) Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50(6):556–566

    Article  Google Scholar 

  57. Kim A, Maleki T, Ziaie B (2012) A novel electromechanical interrogation scheme for implantable passive transponders. In: Proceedings of IEEE MEMS, pp 31–34

    Google Scholar 

  58. Shaul O, Boaz S, Doron S (2012) Non-invasive sensing of the electrical energy harvested by medical implants powered by an ultrasonic transcutaneous energy transfer link. In: Proceeding of IEEE Industrial Electronics (ISIE), pp 1153–1157

    Google Scholar 

  59. Fowler AG, Moheimani SOR, Behrens S (2014) An omnidirectional MEMS ultrasonic energy harvester for implanted devices. J Microelectromech Syst 23(6):1454–1462

    Article  MATH  Google Scholar 

  60. Mazzilli F, Lafon C, Dehollain C (2014) A 10.5 cm ultrasound link for deep implanted medical devices. IEEE Trans Biomed Circuits Syst 8(5):738–750

    Article  Google Scholar 

  61. Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS), pp 2865–2868

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT and Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sam Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kerley, R., Huang, X., Ha, D.S. (2016). Energy Harvesting from the Human Body and Powering up Implant Devices. In: Kyung, CM. (eds) Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9990-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9990-4_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9989-8

  • Online ISBN: 978-94-017-9990-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics