Skip to main content

Foundations and Applications of 3D Imaging

  • Chapter
  • First Online:

Part of the book series: KAIST Research Series ((KAISTRS))

Abstract

Two-dimensional imaging through digital photography has been a main application of mobile computing devices, such as smart phones, during the last decade. Expanding the dimensions of digital imaging, the recent advances in 3D imaging technology are about to be combined with such smart devices, resulting in broadened applications of 3D imaging. This chapter presents the foundations of 3D imaging, that is, the relationship between disparity and depth in a stereo camera system, and it surveys a general workflow to build a 3D model from sensor data. In addition, recent advanced 3D imaging applications are introduced: hyperspectral 3D imaging, multispectral photometric stereo and stereo fusion of refractive and binocular stereo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baek SH, Kim MH (2014) Stereo fusion using a refractive medium on a binocular base. In: Proceedings Asian conference on computer vision (ACCV 2014). Springer, LNCS, Singapore, pp 1–16

    Google Scholar 

  2. Baek SH, Kim MH (2015) Stereo fusion: combining refractive and binocular disparity. In: Computer vision and image understanding (CVIU), pp 1–42

    Google Scholar 

  3. Bando Y, Chen BY, Nishita T (2008) Extracting depth and matte using a color-filtered aperture. ACM Trans Graph 27(5):134:1–134:9

    Google Scholar 

  4. Barsky S, Petrou M (2003) The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans Pattern Anal Mach Intell 25(10):1239–1252

    Article  Google Scholar 

  5. Basri R, Jacobs DW, Kemelmacher I (2007) Photometric stereo with general, unknown lighting. Int J Comput Vision 72(3):239–257

    Google Scholar 

  6. Bernardini F, Rushmeier H (2002) The 3D model acquisition pipeline. Comput Graph Forum 21(2):149

    Article  Google Scholar 

  7. Bouguet JY, Perona P (1998) 3D photography on your desk. In: ICCV, pp 43–52

    Google Scholar 

  8. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  9. Brauers J, Schulte N, Aach T (2007) Modeling and compensation of geometric distortions of multispectral cameras with optical bandpass filter wheels. In: 15th European signal processing conference, vol 15, pp 1902–1906

    Google Scholar 

  10. Chandraker M, Agarwal S, Kriegman D (2007) Shadowcuts: photometric stereo with shadows. In: IEEE conference on computer vision and pattern recognition, CVPR’07. IEEE, pp 1–8

    Google Scholar 

  11. Chen Z, Wong K, Matsushita Y, Zhu X, Liu M (2011) Self-calibrating depth from refraction. In: Proceedings international conference on computer vision (ICCV), pp 635–642

    Google Scholar 

  12. Chen Z, Wong KYK, Matsushita Y, Zhu X (2013) Depth from refraction using a transparent medium with unknown pose and refractive index. Int J Comput Vision 8:1–15

    Google Scholar 

  13. Farouk M, Rifai IE, Tayar SE, Shishiny HE, Hosny M, Rayes ME, Gomes J, Giordano F, Rushmeier HE, Bernardini F, Magerlein K (2003) Scanning and processing 3D objects for web display. In: Proceedings international conference on 3D digital imaging and modeling (3DIM), pp 310–317

    Google Scholar 

  14. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376

    Article  MATH  Google Scholar 

  15. Gallup D, Frahm JM, Mordohai P, Pollefeys M (2008) Variable baseline/resolution stereo. In: Proceedings on computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  16. Gao C, Ahuja N (2004) Single camera stereo using planar parallel plate. In: Proceedings international conference on pattern recognition (ICPR), vol 4, pp 108–111

    Google Scholar 

  17. Gao C, Ahuja N (2006) A refractive camera for acquiring stereo and super-resolution images. In: Proceedings on computer vision and pattern recognition (CVPR), pp 2316–2323

    Google Scholar 

  18. Gupta M, Nayar SK (2012) Micro phase shifting. In: Proceedings on computer vision and pattern recognition (CVPR), pp 813–820

    Google Scholar 

  19. He K, Sun J, Tang X (2010) Guided image filtering. In: Proceedings on European conference on computer vision (ECCV). Springer, pp 1–14

    Google Scholar 

  20. Hecht E (1987) Optics. Addison-Wesley, Reading

    Google Scholar 

  21. Hernández C, Vogiatzis G, Cipolla R (2008) Shadows in three-source photometric stereo. In: Computer vision–ECCV 2008. Springer, pp 290–303

    Google Scholar 

  22. Holroyd M, Lawrence J, Zickler T (2010) A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans Graph (Proc SIGGRAPH 2010) 29(3):99:1–99:12

    Google Scholar 

  23. Kajiya JT (1986) The rendering equation. In: Proc. ACM SIGGRAPH Computer Graphics ‘86, vol 20, pp 143–150

    Google Scholar 

  24. Kim MH, Harvey TA, Kittle DS, Rushmeier H, Dorsey J, Prum RO, Brady DJ (2012) 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans Graph (Proc SIGGRAPH 2014) 31(4):38:1–38:11

    Google Scholar 

  25. Lanman D, Taubin G (2009) Build your own 3D scanner. ACM SIGGRAPH 2009 Courses on—SIGGRAPH 2009. ACM Press, New York, pp 1–94

    Google Scholar 

  26. Lee D, Kweon I (2000) A novel stereo camera system by a biprism. IEEE Trans Rob Autom 16(5):528–541

    Article  Google Scholar 

  27. Levin A, Fergus R, Durand F, Freeman WT (2007) Image and depth from a conventional camera with a coded aperture. ACM Trans Graphics 26(3):70:1–70:9

    Google Scholar 

  28. Liao M, Huang X, Yang R (2011) Interreflection removal for photometric stereo by using spectrum-dependent albedo. In: Proceedings on computer vision and pattern recognition (CVPR), pp 689–696

    Google Scholar 

  29. Liu C, Yuen J, Torralba A (2011) Sift flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994

    Article  Google Scholar 

  30. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  31. Mansouri A, Lathuiliere A, Marzani FS, Voisin Y, Gouton P (2007) Toward a 3d multispectral scanner: an application to multimedia. IEEE MultiMedia 14(1):40–47

    Article  Google Scholar 

  32. Nakabo Y, Mukai T, Hattori Y, Takeuchi Y, Ohnishi N (2005) Variable baseline stereo tracking vision system using high-speed linear slider. In: Proceedings international conference on robotics and automation (ICRA), pp 1567–1572

    Google Scholar 

  33. Nam G, Kim MH (2014) Multispectral photometric stereo for acquiring high-fidelity surface normals. IEEE Comput Graphics Appl 34(6):57–68

    Article  MathSciNet  Google Scholar 

  34. Nayar SK, Ikeuchi K, Kanade T (1991) Shape from interreflections. Int J Comput Vision 6(3):173–195

    Article  Google Scholar 

  35. Nayar SK, Krishnan G, Grossberg MD, Raskar R (2006) Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans Graph 25(3):935–944

    Article  Google Scholar 

  36. Nishimoto Y, Shirai Y (1987) A feature-based stereo model using small disparities. In: Proceedings on computer vision and pattern recognition (CVPR), pp 192–196

    Google Scholar 

  37. Okutomi M, Kanade T (1993) A multiple-baseline stereo. IEEE Trans Pattern Anal Mach Intell 15(4):353–363

    Article  Google Scholar 

  38. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings on computer vision and pattern recognition (CVPR), pp 519–528

    Google Scholar 

  39. Shimizu M, Okutomi M (2006) Reflection stereo-novel monocular stereo using a transparent plate. In: Proceedings Canadian conference on computer and robot vision (CRV). IEEE, pp 14–14

    Google Scholar 

  40. Shimizu M, Okutomi M (2007) Monocular range estimation through a double-sided half-mirror plate. In: Proceedings Canadian conference on computer and robot vision (CRV). IEEE, pp 347–354

    Google Scholar 

  41. Sun J, Smith M, Smith L, Midha S, Bamber J (2007) Object surface recovery using a multi-light photometric stereo technique for non-lambertian surfaces subject to shadows and specularities. Image Vis Comput 25(7):1050–1057

    Article  Google Scholar 

  42. Takatani T, Matsushita Y, Lin S, Mukaigawa Y, Yagi Y (2013) Enhanced photometric stereo with multispectral images. In: International conference on machine vision applications (MVA). IAPR. pp 1–4

    Google Scholar 

  43. Verbiest F, Van Gool L (2008) Photometric stereo with coherent outlier handling and confidence estimation. In: Proceedings on computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  44. Vogiatzis G, Hernández C (2012) Self-calibrated, multi-spectral photometric stereo for 3d face capture. Int J Comput Vision 97(1):91–103

    Article  Google Scholar 

  45. Wagadarikar AA, Pitsianis NP, Sun X, Brady DJ (2009) Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt Express 17(8):6368–6388

    Article  Google Scholar 

  46. Wu TP, Tang KL, Tang CK, Wong TT (2006) Dense photometric stereo: a markov random field approach. IEEE Trans Pattern Anal Mach Intell 28(11):1830–1846

    Article  Google Scholar 

  47. Zilly F, Riechert C, Mller M, Eisert P, Sikora T, Kauff P (2013) Real-time generation of multi-view video plus depth content using mixed narrow and wide baseline. J Visual Commun Image Represent 25(4):632–648

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea NRF grant (2013R1A1A1010165) and the Center for Integrated Smart Sensors, funded by the Ministry of Science, ICT & Future Planning, as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min H. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, M.H. (2016). Foundations and Applications of 3D Imaging. In: Kyung, CM. (eds) Theory and Applications of Smart Cameras. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9987-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9987-4_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9986-7

  • Online ISBN: 978-94-017-9987-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics