Skip to main content

Part of the book series: KAIST Research Series ((KAISTRS))

Abstract

This chapter reports a comprehensive review of the state-of-the-art in research on daily health monitoring and early diagnosis of specific diseases via the analysis of exhaled breath biomarkers. Different types of breath analyzing techniques including gas chromatography/mass spectroscopy (GC/MS), selected-ion flow-tube mass spectroscopy (SIFT-MS), and proton transfer reaction-mass spectrometry (PTR-MS) are compared to evaluate the unique strengths of each method. Recently, as an emerging breathsensing technique, we highlight chemiresistive-type gas sensors with characteristics of portability, cost effectiveness, and real-time analysis. Among various diseases, we focused on studies related to the diagnosis of diabetes and lung cancer. A number of studies have demonstrated a strong correlation between exhaled breath components and specific diseases, thus offering strong potential for clinical diagnostic application using exhaled breath sensors. In addition, we also summarized recent progress on daily healthcare such as fat-burning and halitosis through breath analysis. Finally, future perspectives on clinical applications using breath analyzing techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tisch U, Haick H (2014) Chemical sensors for breath gas analysis: the latest developments at the breath analysis summit 2013. J Breath Res 8(2):027103

    Google Scholar 

  2. Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU (2014) Review article: next generation diagnostic modalities in gastroenterology-gas phase volatile compound biomarker detection. Aliment Pharm Ther 39(8):780–789

    Google Scholar 

  3. Eckel SP, Baumbach J, Hauschild AC (2014) On the importance of statistics in breath analysis-hope or curse? J Breath Res 8(1):012001

    Google Scholar 

  4. Kim KH, Jahan SA, Kabir E (2012) A review of breath analysis for diagnosis of human health. Trac-Trend Anal Chem 33:1–8

    Google Scholar 

  5. Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–17

    Google Scholar 

  6. Mazzatenta A, Di Giulio C, Pokorski M (2013) Pathologies currently identified by exhaled biomarkers. Resp Physiol Neurobi 187(1):128–134

    Google Scholar 

  7. Broza YY, Haick H (2013) Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 8(5):785–806

    Google Scholar 

  8. Buszewski B, Kesy M, Ligor T, Amann A (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21(6):553–566

    Google Scholar 

  9. Pijnenburg MW, Floor SE, Hop WC, De Jongste JC (2006) Daily ambulatory exhaled nitric oxide measurements in asthma. Pediatr Allergy Immu 17(3):189–193

    Google Scholar 

  10. Selby A, Clayton B, Grundy J, Pike K, Drew K, Raza A, Kurukulaaratchy R, Arshad SH, Roberts G (2010) Are exhaled nitric oxide measurements using the portable NIOX MINO repeatable? Resp Res 11(43):1–9

    Google Scholar 

  11. Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP (1999) Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353(9168):1930–1933

    Google Scholar 

  12. Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP (1988) A computerized classification technique for screening for the presence of breath biomarkers in lung-cancer. Clin Chem 34(8):1613–1618

    Google Scholar 

  13. Cheng WH, Lee WJ (1999) Technology development in breath microanalysis for clinical diagnosis. J Lab Clin Med 133(3):218–228

    MathSciNet  Google Scholar 

  14. Prince BJ, Milligan DB, McEwan MJ (2010) Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun Mass Sp 24(12):1763–1769

    Google Scholar 

  15. Dummer JF, Storer MK, Hu WP, Swanney MP, Milne GJ, Frampton CM, Scotter JM, Prisk GK, Epton MJ (2010) Accurate, reproducible measurement of acetone concentration in breath using selected ion flow tube-mass spectrometry. J Breath Res 4(4):046001

    Google Scholar 

  16. Ajibola OA, Smith D, Spanel P, Ferns GA (2013) Effects of dietary nutrients on volatile breath metabolites. J Nutr Sci 2:e34

    Google Scholar 

  17. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27(5):347–354

    Google Scholar 

  18. Kim ID, Rothschild A (2011) Nanostructured metal oxide gas sensors prepared by electrospinning. Polym Advan Technol 22(3):318–325

    Google Scholar 

  19. Tangerman A, Winkel EG (2010) Extra-oral halitosis: an overview. J Breath Res 4(1):017003

    Google Scholar 

  20. Whittle CL, Fakharzadeh S, Eades J, Preti G (2007) Human breath odors and their use in diagnosis. Ann Ny Acad Sci 1098:252–266

    Google Scholar 

  21. Ciaffoni L, Peverall R, Ritchie GAD (2011) Laser spectroscopy on volatile sulfur compounds: possibilities for breath analysis. J Breath Res 5(2):024002

    Google Scholar 

  22. Tsai CC, Chou HH, Wu TL, Yang YH, Ho KY, Wu YM, Ho YP (2008) The levels of volatile sulfur compounds in mouth air from patients with chronic periodontitis. J Periodontal Res 43(2):186–193

    Google Scholar 

  23. Scully C, Greenman J (2008) Halitosis (breath odor). Periodontol 2000 48:66–75

    Google Scholar 

  24. Porter SR, Scully C (2006) Oral malodour (halitosis). Brit Med J 333(7569):632–635

    Google Scholar 

  25. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ (2003) Diversity of bacterial Populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41(2):558–563

    Google Scholar 

  26. Hughes FJ, McNab R (2008) Oral malodour-a review. Arch Oral Biol 53:S1–S7

    Google Scholar 

  27. Kim JG, Kim YJ, Yoo SH, Lee SJ, Chung JW, Kim MH, Park DK, Hahm KB (2010) Halimeter ppb levels as the predictor of erosive gastroesophageal reflux disease. Gut Liver 4(3):320–325

    Google Scholar 

  28. Tanda N, Washio J, Ikawa K, Suzuki K, Koseki T, Iwakura M (2007) A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study. J Dent 35(7):552–557

    MATH  Google Scholar 

  29. Tangerman A, Winkel EG (2008) The portable gas chromatograph OralChroma (TM): a method of choice to detect oral and extra-oral halitosis. J Breath Res 2(1):017010

    Google Scholar 

  30. Kim ID, Rothschild A, Tuller HL (2013) Advances and new directions in gas-sensing devices. Acta Mater 61(3):974–1000

    Google Scholar 

  31. Jang BH, Landau O, Choi SJ, Shin J, Rothschild A, Kim ID (2013) Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sens Actuators B 188:156–168

    Google Scholar 

  32. Choi SJ, Kim MP, Lee SJ, Kim BJ, Kim ID (2014) Facile Au catalyst loading on the inner shell of hollow SnO2 spheres using Au-decorated block copolymer sphere templates and their selective H2S sensing characteristics. Nanoscale 6(20):11898–11903

    Google Scholar 

  33. Dong KY, Choi JK, Hwang IS, Lee JW, Kang BH, Ham DJ, Lee JH, Ju BK (2011) Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sens Actuators, B 157(1):154–161

    Google Scholar 

  34. Woo HS, Kwak CH, Kim ID, Lee JH (2014) Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors. J Mater Chem A 2(18):6412–6418

    MATH  Google Scholar 

  35. Shin J, Choi SJ, Youn DY, Kim ID (2012) Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J Electroceram 29(2):106–116

    Google Scholar 

  36. Choi SJ, Jang BH, Lee SJ, Min BK, Rothschild A, Kim ID (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6(4):2587–2596

    Google Scholar 

  37. Choi SJ, Fuchs F, Demadrille R, Grevin B, Jang BH, Lee SJ, Lee JH, Tuller HL, Kim ID (2014) Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl Mater Interfaces 6(12):9061–9070

    Google Scholar 

  38. Choi SJ, Lee I, Jang BH, Youn DY, Ryu WH, Park CO, Kim ID (2013) Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal Chem 85(3):1792–1796

    Google Scholar 

  39. Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng SZ, Xu NS, Ding Y, Wang ZL (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88(20):203101

    Google Scholar 

  40. Kim MP, Ku KH, Kim HJ, Jang SG, Yi GR, Kim BJ (2013) Surface intaglio nanostructures on microspheres of gold-cored block copolymer spheres. Chem Mater 25(21):4416–4422

    Google Scholar 

  41. Kim MP, Kang DJ, Jung DW, Kannan AG, Kim KH, Ku KH, Jang SG, Chae WS, Yi GR, Kim BJ (2012) Gold-decorated block copolymer microspheres with controlled surface nanostructures. ACS Nano 6(3):2750–2757

    Google Scholar 

  42. Lee I, Choi SJ, Park KM, Lee SS, Choi S, Kim ID, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens Actuators B 197:300–307

    Google Scholar 

  43. Turner C, Walton C, Hoashi S, Evans M (2009) Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J Breath Res 3(4):046004

    Google Scholar 

  44. Wang ZN, Wang CJ (2013) Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res 7(3):037109

    Google Scholar 

  45. Fan GT, Yang CL, Lin CH, Chen CC, Shih CH (2014) Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 120:386–390

    Google Scholar 

  46. Deng CH, Zhang W, Zhang J, Zhang XM (2004) Rapid determination of acetone in human plasma by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 805(2):235–240

    Google Scholar 

  47. Lee J, Ngo J, Blake D, Meinardi S, Pontello AM, Newcomb R, Galassetti PR (2009) Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J Appl Physiol 107(1):155–160

    Google Scholar 

  48. Novak BJ, Blake DR, Meinardi S, Rowland FS, Pontello A, Cooper DM, Galassetti PR (2007) Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. P Natl Acad Sci USA 104(40):15613–15618

    Google Scholar 

  49. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin Chim Acta 347(1–2):25–39

    Google Scholar 

  50. Deng CH, Zhang J, Yu XF, Zhang W, Zhang XM (2004) Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810(2):269–275

    Google Scholar 

  51. Diskin AM, Spanel P, Smith D (2003) Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol Meas 24(1):107–119

    Google Scholar 

  52. Yan YY, Wang QH, Li WW, Zhao ZJ, Yuan X, Huang YP, Duan YX (2014) Discovery of potential biomarkers in exhaled breath for diagnosis of type 2 diabetes mellitus based on GC-MS with metabolomics. RSC Adv 4(48):25430–25439

    Google Scholar 

  53. Greiter MB, Keck L, Siegmund T, Hoeschen C, Oeh U, Paretzke HG (2010) Differences in exhaled gas profiles between patients with type 2 diabetes and healthy controls. Diabetes Technol Ther 12(6):455–463

    Google Scholar 

  54. Hu W (2005) Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Ethnic Dis 15(3):32–34

    Google Scholar 

  55. Righettoni M, Schmid A, Amann A, Pratsinis SE (2013) Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 7(3):037110

    Google Scholar 

  56. Turner C, Parekh B, Walton C, Spanel P, Smith D, Evans M (2008) An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 22(4):526–532

    Google Scholar 

  57. Minh TDC, Oliver SR, Ngo J, Flores R, Midyett J, Meinardi S, Carlson MK, Rowland FS, Blake DR, Galassetti PR (2011) Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am J Physiol-Endoc M 300(6):E1166–E1175

    Google Scholar 

  58. Smith D, Spanel P (1996) Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. Int Rev Phys Chem 15(1):231–271

    Google Scholar 

  59. Cho NG, Woo HS, Lee JH, Kim ID (2011) Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem Commun 47(40):11300–11302

    Google Scholar 

  60. Choi SH, Hwang IS, Lee JH, Oh SG, Kim ID (2011) Microstructural control and selective C2H5OH sensing properties of Zn2SnO4 nanofibers prepared by electrospinning. Chem Commun 47(33):9315–9317

    Google Scholar 

  61. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd Loading. Adv Funct Mater 20(24):4258–4264

    Google Scholar 

  62. Chang YE, Youn DY, Ankonina G, Yang DJ, Kim HG, Rothschild A, Kim ID (2009) Fabrication and gas sensing properties of hollow SnO2 hemispheres. Chem Commun 27:4019–4021

    Google Scholar 

  63. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013

    Google Scholar 

  64. Xiao YH, Lu LZ, Zhang AQ, Zhang YH, Sun L, Huo L, Li F (2012) Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Appl Mater Interfaces 4(8):3797–3804

    Google Scholar 

  65. Gunawan P, Mei L, Teo J, Ma JM, Highfield J, Li QH, Zhong ZY (2012) Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28(39):14090–14099

    Google Scholar 

  66. Choi S-J, Ryu W-H, Kim S-J, Cho H-J, Kim I-D (2014) Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J Mater Chem B 2(41):7160–7167

    Google Scholar 

  67. Righettoni M, Tricoli A (2011) Toward portable breath acetone analysis for diabetes detection. J Breath Res 5(3):1–16

    Google Scholar 

  68. Righettoni M, Tricoli A, Pratsinis SE (2010) Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587

    Google Scholar 

  69. Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped epsilon-WO3 for sensing of acetone in the human breath. Chem Mater 22(10):3152–3157

    Google Scholar 

  70. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si: WO3 gas sensors. Anal Chim Acta 738:69–75

    Google Scholar 

  71. Xiao T, Wang XY, Zhao ZH, Li L, Zhang L, Yao HC, Wang JS, Li ZJ (2014) Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sens Actuators B 199:210–219

    Google Scholar 

  72. Shin J, Choi SJ, Lee I, Youn DY, Park CO, Lee JH, Tuller HL, Kim ID (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357–2367

    Google Scholar 

  73. Shi JC, Hu GJ, Sun Y, Geng M, Wu J, Liu YF, Ge MY, Tao JC, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sens Actuators B 156(2):820–824

    Google Scholar 

  74. King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A (2009) Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res 3(2):027006

    Google Scholar 

  75. Choi SH, Ankonina G, Youn DY, Oh SG, Hong JM, Rothschild A, Kim ID (2009) Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 3(9):2623–2631

    Google Scholar 

  76. Kundu SK, Bruzek JA, Nair R, Judilla AM (1993) Breath acetone analyzer—diagnostic-tool to monitor dietary-fat loss. Clin Chem 39(1):87–92

    Google Scholar 

  77. Samudrala D, Lammers G, Mandon J, Blanchet L, Schreuder THA, Hopman MT, Harren FJM, Tappy L, Cristescu SM (2014) Breath acetone to monitor life style interventions in field conditions: an exploratory study. Obesity 22(4):980–983

    Google Scholar 

  78. Toyooka T, Hiyama S, Yamada Y (2013) A prototype portable breath acetone analyzer for monitoring fat loss. J Breath Res 7(3):036005

    Google Scholar 

  79. Landini BE, Bravard ST (2009) Breath acetone concentration measured using a palm-size enzymatic sensor system. IEEE Sens J 9(12):1802–1807

    Google Scholar 

  80. King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H, Filipiak W, Teschl S, Hinterhuber H, Amann A (2010) Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas 31(9):1169–1184

    Google Scholar 

  81. Taivans I, Bukovskis M, Strazda G, Jurka N (2014) Breath testing as a method for detecting lung cancer. Expert Rev Anticanc 14(2):121–123

    Google Scholar 

  82. American Cancer Society (2014) Cancer facts and figures 2014. American Cancer Society, Atlanta

    Google Scholar 

  83. Dent AG, Sutedja TG, Zimmerman PV (2013) Exhaled breath analysis for lung cancer. J Thorac Dis 5:S540–S550

    Google Scholar 

  84. Chan HP, Lewis C, Thomas PS (2009) Exhaled breath analysis: novel approach for early detection of lung cancer. Lung Cancer 63(2):164–168

    Google Scholar 

  85. Mazzone PJ (2012) Exhaled breath volatile organic compound biomarkers in lung cancer. J Breath Res 6(2):027106

    Google Scholar 

  86. Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN (2003) Detection of lung cancer with volatile markers in the breath. Chest 123(6):2115–2123

    Google Scholar 

  87. Wang YS, Hu YJ, Wang D, Yu K, Wang L, Zou YC, Zhao C, Zhang XL, Wang P, Ying KJ (2012) The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark 11(4):129–137

    Google Scholar 

  88. Fuchs P, Loeseken C, Schubert JK, Miekisch W (2010) Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126(11):2663–2670

    Google Scholar 

  89. Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Brit J Cancer 103(4):542–551

    Google Scholar 

  90. Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Resp Crit Care 171(11):1286–1291

    Google Scholar 

  91. Song G, Qin T, Liu H, Xu GB, Pan YY, Xiong FX, Gu KS, Sun GP, Chen ZD (2010) Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67(2):227–231

    Google Scholar 

  92. Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, Mutti A (2005) Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Resp Res 6(71):1–10

    Google Scholar 

  93. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64(9):744–748

    Google Scholar 

  94. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agro A, D’Amico A (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 18(10):1209–1218

    Google Scholar 

  95. D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2):170–176

    Google Scholar 

  96. Mazzone PJ, Hammel J, Dweik R, Na J, Czich C, Laskowski D, Mekhail T (2007) Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62(7):565–568

    Google Scholar 

  97. Huo DQ, Xu YH, Hou CJ, Yang M, Fa HB (2014) A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification. Sens Actuators B 199:446–456

    Google Scholar 

  98. Ono K, Sugio K, Uramoto H, Baba T, Ichiki Y, Takenoyama M, Hanagiri T, Oyama T, Yasumoto K (2009) Discrimination of multiple primary lung cancers from intrapulmonary metastasis based on the expression of four cancer-related proteins. Cancer 115(15):3489–3500

    Google Scholar 

  99. Dragonieri S, Annema JT, Schot R, van der Schee MPC, Spanevello A, Carratu P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Google Scholar 

  100. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    Google Scholar 

  101. Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725

    Google Scholar 

  102. Peng G, Trock E, Haick H (2008) Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 8(11):3631–3635

    Google Scholar 

  103. Barash O, Peled N, Hirsch FR, Haick H (2009) Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 5(22):2618–2624

    Google Scholar 

  104. Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J (2008) Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int 8(17):1–11

    Google Scholar 

  105. Joseph Y, Guse B, Vossmeyer T, Yasuda A (2008) Gold nanoparticle/organic networks as chemiresistor coatings: the effect of film morphology on vapor sensitivity. J Phys Chem C 112(32):12507–12514

    Google Scholar 

  106. Kim NH, Choi SJ, Yang DJ, Bae J, Park J, Kim ID (2014) Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens Actuators B 193:574–581

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, ID., Choi, SJ., Kim, SJ., Jang, JS. (2015). Exhaled Breath Sensors. In: Kyung, CM. (eds) Smart Sensors for Health and Environment Monitoring. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9981-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9981-2_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9980-5

  • Online ISBN: 978-94-017-9981-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics