Skip to main content

Data Networking for Autonomous Fatigue Crack Detection

  • Chapter
  • First Online:
Smart Sensors for Health and Environment Monitoring

Part of the book series: KAIST Research Series ((KAISTRS))

  • 1598 Accesses

Abstract

One of the useful applications of wireless sensor networks is structural health monitoring, where sensors are distributed to monitor buildings, bridges, large dams, etc. Out of a large number of application domains we focus on the fatigue crack detection of a structure, e.g., bridge. In this chapter, we summarize the required components for data networking for autonomous fatigue crack detection and explore the design choices there. We first discuss the unique characteristics in delivering data stemming from autonomous fatigue crack detection such as data traffic pattern, and network topology, and the necessary degree of performance metrics, e.g., energy efficiency and latency. From the data networking perspective, we present and compare the strength and weakness of various design choices in wireless sensor networks, covering multiple layers in networking protocol stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    China wind power capacity is expected to reach 150 million kilowatts.

References

  1. Chintalapudi K, Fu T, Paek J, Kothari N, Rangwala S, Caffrey J, Govindan R, Johnson E, Masri S (2006) Monitoring civil structures with a wireless sensor network. IEEE Internet Comput 10(2):26–34

    Article  Google Scholar 

  2. Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser S, Turon M (2007) Health monitoring of civil infrastructures using wireless sensor networks. In: Proceedings of ACM information processing in sensor networks (IPSN)

    Google Scholar 

  3. Buettner M, Yee G, Anderson E, Han R (2006) X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proceedings of ACM SenSys

    Google Scholar 

  4. Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks. In: Proceedings of ACM SenSys

    Google Scholar 

  5. Sun Y, Johnson DB (2008) I-MAC: a receiver-initiated asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks. In: Proceedings of ACM SenSys

    Google Scholar 

  6. Ye W, Heidemann J, Estrin D (2002) An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of IEEE infocom

    Google Scholar 

  7. Ye W, Silva F, Heidemann J (2006) Ultra-low duty cycle MAC with scheduled channel polling. In: Proceedings of ACM SenSys

    Google Scholar 

  8. Milosiu H, Oehler F, Eppel M, Fruhsorger D, Lensing S, Popken G, Thones T (2013) A 3-μw 868-mhz wake-up receiver with-8 dbm sensitivity and scalable data rate. In: Proceedings of IEEE ESSCIRC

    Google Scholar 

  9. Pletcher NM, Gambini S, Rabaey J (2009) A 52 μw wake-up receiver with-72 dbm sensitivity using an uncertain-if architecture. IEEE J Solid State Circ 44(1):269–280

    Article  Google Scholar 

  10. Yoon DY, Jeong CJ, Cartwright J, Kang HY, Han SK, Kim NS, Ha DS, Lee SG (2012) A new approach to low-power and low-latency wake-up receiver system for wireless sensor nodes. IEEE J Solid State Circ 47(10):2405–2419

    Article  Google Scholar 

  11. Demirkol I, Ersoy C, Onur E (2009) Wake-up receivers for wireless sensor networks: benefits and challenges. IEEE Trans Wireless Commun 16(4):88–96

    Article  Google Scholar 

  12. Ansari J, Pankin D, Mähönen P (2009) Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. Int J Wireless Inf Netw 16(3):118–130

    Article  Google Scholar 

  13. Dhanaraj M, Manoj B, Murthy CSR (2005) A new energy efficient protocol for minimizing multi-hop latency in wireless sensor networks. In: Proceedings of 3rd IEEE international conference on pervasive computing and communications (PerCom)

    Google Scholar 

  14. Le-Huy P, Roy S (2010) Low-power wake-up radio for wireless sensor networks. Mobile Netw Appl 15(2):226–236

    Article  Google Scholar 

  15. Texas Intruments CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver (Rev. C). http://www.ti.com/product/cc2420

  16. Lu G, Krishnamachari B, Raghavendra CS (2004) An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In: Proceedings of IEEE parallel and distributed processing symposium

    Google Scholar 

  17. Li Y, Ye W, Heidemann J (2005) Energy and latency control in low duty cycle MAC protocols. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC)

    Google Scholar 

  18. Cao Y, Guo S, He T (2012) Robust multi-pipeline scheduling in low-duty-cycle wireless sensor networks. In: Proceedings of IEEE infocom

    Google Scholar 

  19. Ganeriwal S, Kumar R, Srivastava MB (2003) Timing-sync protocol for sensor networks. In: Proceedings of ACM SenSys

    Google Scholar 

  20. Mills DL (1991) Internet time synchronization: the network time protocol. IEEE Trans Commun 39(10):1482–1493

    Article  Google Scholar 

  21. Elson J, Girod L, Estrin D (2002) Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Syst Rev 36(SI):147–163

    Google Scholar 

  22. Subramanian R, Fekri F (2006) Sleep scheduling and lifetime maximization in sensor networks: fundamental limits and optimal solutions. In: Proceedings of ACM information processing in sensor networks (IPSN)

    Google Scholar 

  23. Song L, Hatzinakos D (2007) A cross-layer architecture of wireless sensor networks for target tracking. IEEE/ACM Trans Netw 15(1):145–158

    Article  Google Scholar 

  24. Miller MJ, Vaidya N (2005) A MAC protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Trans Mob Comput 4(3):228–242

    Article  Google Scholar 

  25. Guo C, Zhong LC, Rabaey JM (2001) Low power distributed MAC for ad hoc sensor radio networks. In: Proceedings of IEEE global telecommunications conference (GLOBECOM)

    Google Scholar 

  26. de Francisco R, Zhang Y (2011) An interference robust multi-carrier wake-up radio. In: Proceedings of IEEE wireless communications and networking conference (WCNC)

    Google Scholar 

  27. Chowdhury KR, Nandiraju N, Cavalcanti D, Agrawal DP (2006) CMAC-a multi-channel energy efficient MAC for wireless sensor networks. In: Proceedings of IEEE wireless communications and networking conference (WCNC)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT and Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwan Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jung, J., Kim, D., Lee, H., Yi, Y. (2015). Data Networking for Autonomous Fatigue Crack Detection. In: Kyung, CM. (eds) Smart Sensors for Health and Environment Monitoring. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9981-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9981-2_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9980-5

  • Online ISBN: 978-94-017-9981-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics