Skip to main content

Silicon Uptake and Transport in Plants: Physiological and Molecular Aspects

  • Chapter

Abstract

Two different types of silicon (Si) transporter, influx and efflux, are involved in the Si-transport process of higher plants. The transporters responsible for Si uptake by roots (Lsi1 and Lsi2) have been identified in several higher plant species including rice (Oryza sativa), barley (Hordeum vulgare), maize (Zea mays), wheat (Triticum aestivum), pumpkin (Cucurbita moschata) and the primitive vascular plant, Equisetum arvense (horsetail). An influx transporter, Lsi6, involved in xylem unloading of Si has also been identified in graminaceous species, including rice, barley and corn. In this chapter, an overview will be provided to highlight the most recent breakthroughs in Si uptake and transport by plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balasta MLFC, Perez CM, Juliano BO, Villareal CP, Lott JNA, Roxas DB. Effect of silica level on some properties of Oryza sativa straw and hull. Can J Bot. 1989;67:2356–63.

    Article  CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F. Beneficial elements. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. 3rd ed. Amsterdam: Elsevier; 2011. p. 257–61.

    Google Scholar 

  • Casey WH, Kinrade SD, Kinght TG, Rains DW, Epstein E. Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ. 2003;27:51–4.

    Article  Google Scholar 

  • Chiba Y, Yamaji N, Mitani N, Ma J. HvLsi1 is a silicon influx transporter in barley. Plant J. 2009;57:810–8.

    Article  CAS  PubMed  Google Scholar 

  • Deren CW. Plant genotype, silicon concentration, and silicon-related responses. In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier Science; 2001. p. 149–58.

    Chapter  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol. 2013;83:303–15.

    Article  CAS  PubMed  Google Scholar 

  • Epstein E. Silicon. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:641–64.

    Article  CAS  PubMed  Google Scholar 

  • Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J. 2012;72:320–30.

    Article  PubMed  Google Scholar 

  • Heine G, George Tikum GI, Horst WJ. Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. J Plant Nutr Soil Sci. 2005;168:600–6.

    Article  CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B. Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil. 2006;287:359–74.

    Article  CAS  Google Scholar 

  • Hildebrand M, Volcani BE, Gossmann W, Schroeder J. A gene family of silicon transporters. Nature. 1997;385:688–9.

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR. Phylogenetic variation in the silicon composition of plants. Ann Bot. 2005;96:1027–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis SC. The uptake and transport of silicon by perennial ryegrass and wheat. Plant Soil. 1987;97:429–37.

    Article  CAS  Google Scholar 

  • Liang YC, Si J, Römheld V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 2005;167:797–804.

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Hua HX, Zhu YG, Zhang J, Cheng CM, Römheld V. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol. 2006;172:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Luxová M, Abe J, Tanimoto E, Taiichiro H, Shinobu I. The dynamics of silicon deposition in the sorghum root endodermis. New Phythol. 2003;158:437–41.

    Article  CAS  Google Scholar 

  • Ma JF. Si transporters in higher plant. In: Jhon PT, Bienert PG, editors. MIPs and their role in the exchange of materials. Texas: Landes Bioscience; 2010. p. 99–109.

    Chapter  Google Scholar 

  • Ma JF, Takahashi E. Soil, fertilizer, and plant silicon research in Japan. Amsterdam: Elsevier; 2002.

    Google Scholar 

  • Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006;11:392–7.

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N. Functions and transport of silicon in plants. A review. Cell Mol Life Sci. 2008;65:3049–57.

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 2001a;127:1773–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E. Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier; 2001b. p. 17–39.

    Chapter  Google Scholar 

  • Ma JF, Tamai K, Ichii M, Wu K. A rice mutant defective in active Si uptake. Plant Physiol. 2002;130:2111–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Higashitani A, Sato K, Tateda K. Genotypic variation in Si content of barley grain. Plant Soil. 2003;249:383–7.

    Article  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature. 2006;440:688–91.

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani M, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice. Nature. 2007a;448:209–12.

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N. Genotypic difference in Si uptake and expression of Si transporter genes in rice. Plant Physiol. 2007b;145:919–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath S, Zhao FJ. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci U S A. 2008;105:9931–5.

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N. Transport of silicon from roots to panicles in plants. Jpn Acad, Ser B. 2011;87:377–85.

    Article  CAS  Google Scholar 

  • Mitani N, Ma JF. Uptake system of silicon in different plant species. J Exp Bot. 2005;56:1255–61.

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF, Iwashita T. Identification of silicon form in the xylem of rice (Oryza sativa L.). Plant Cell Physiol. 2005;46:279–83.

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF. Identification and characterization of maize and barley Lsi-2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell. 2009a;21:2133–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF. Identification of maize silicon influx transporters. Plant Cell Physiol. 2009b;50:5–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in Si accumulation. Plant J. 2011;66:231–40.

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav. 2011;6:991–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake Y, Takahashi E. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci Plant Nutr. 1983a;29:71–83.

    Article  CAS  Google Scholar 

  • Miyake Y, Takahashi E. Effect of silicon on the growth of cucumber plant in soil culture. Soil Sci Plant Nutr. 1983b;29:463–71.

    Article  CAS  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma JF, Belanger RR. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol. 2012;79:35–46.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol. 2007;143:495–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M. Systematics and biology of silica bodies in monocotyledons. Bot Rev. 2004;69:377–440.

    Article  Google Scholar 

  • Rafi MM, Epstein E. Silicon absorption by wheat (Triticum aestivum L.). Plant Soil. 1999;211:223–30.

    Article  CAS  Google Scholar 

  • Rains DW, Epstein E, Zasoki RJ, Aslam M. Active silicon uptake in wheat. Plant Soil. 2006;280:223–8.

    Article  CAS  Google Scholar 

  • Raven JA. The transport and function of Si in plants. Biol Rev. 1983;58:179–207.

    Article  CAS  Google Scholar 

  • Raven JA. Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier; 2001. p. 41–55.

    Chapter  Google Scholar 

  • Raven JA. Cycling silicon–the role of accumulation in plants. New Phytol. 2003;158:419–21.

    Article  Google Scholar 

  • Richmond KE, Sussman M. Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol. 2003;6:268–72.

    Article  CAS  PubMed  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE. Silicon management and sustainable rice production. Adv Agron. 1997;58:151–99.

    CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y. The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem. 1990;2:99–122.

    CAS  Google Scholar 

  • Tamai K, Ma JF. Characterization of silicon uptake by rice roots. New Phytol. 2003;158:431–6.

    Article  CAS  Google Scholar 

  • Wiese H, Nikolic M, Römheld V. Silicon in plant nutrition. In: Sattelmacher B, Horst WJ, editors. The apoplast of higher plants: compartment of storage. Transport and reactions. Heidelberg: Springer; 2007. p. 33–47.

    Chapter  Google Scholar 

  • Yamaji N, Ma JF. Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol. 2007;143:1306–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Ma JF. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell. 2009;21:2878–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Ma JF. Further characterization of a rice Si efflux transporter, Lsi2. Soil Sci Plant Nutr. 2011;57:259–564.

    Article  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF. A Transporter regulating silicon distribution in rice shoots. Plant Cell. 2008;20:1381–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaji N, Mitani-Ueno N, Ma JF. Transporters involved in preferential distribution of Si to the panicles at the node in rice. Proceedings The 5th International Conference on Silicon in Agriculture; 2011 September 13–18; Beijing, China; 2011. p. 210.

    Google Scholar 

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 2012;160:1491–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol. 2010;186:392–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015). Silicon Uptake and Transport in Plants: Physiological and Molecular Aspects. In: Silicon in Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9978-2_4

Download citation

Publish with us

Policies and ethics