Skip to main content

Analysis of Silicon in Soil, Plant and Fertilizer

  • Chapter
Silicon in Agriculture

Abstract

The first soil testing of plant-available silicon (Si) was not conducted until 1898 on Hawaiian soils. However, numerous procedures have since been developed for determination of Si content in a wide variety of materials including soils, plants and fertilizers. This chapter reviews current analytical procedures that are widely used for analysis of both total Si in soils, plants and fertilizers and plant-available Si in soils and fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaye DM, Tinsley J. Soluble silica in soils. In: Hallsworth EG, Crawford DV, editors. Experimental pedology (Easter School in Agricultural Science, University of Nottingham). London: Butterworths; 1965. p. 127–48.

    Google Scholar 

  • Ayres AS. Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Sci. 1966;101:216–27.

    Article  CAS  Google Scholar 

  • Barbosa MP, Snyder GH, Elliott CL, Datnoff LE. Evaluation of soil test procedures for determining rice-available silicon. Commun Soil Sci Plant Anal. 2001;32:1779–92.

    Article  Google Scholar 

  • Berthelsen S. An assessment of the silicon status of soils in north Queensland, and the impact of sub-optimal plant available soil silicon on sugarcane production systems. MSc thesis, Tropical plant Sciences within the School of Tropical Biology, James Cook University, Townsville; 2000.

    Google Scholar 

  • Berthelsen S, Noble AD, Kingston G, Hurney A, Rudd A, Garside A. Improving yield and ccs in sugarcane through the application of silicon based amendments. Final Report, Sugar Research and Development Corporation Project CLW009; 2003.

    Google Scholar 

  • Berthelsen S, Korndörfer GH. Methods for Si analysis in plant, soil and fertilizers. Proceedings of the third International Conference on Silicon in Agriculture; 2005 Oct 22–26; Uberlandia, Brazil: Universidade Federal de Uberlandia; 2005. p 85–91.

    Google Scholar 

  • Bishop RT. Aluminium and silica relationships in growth failure areas. Proceedings of the South African Sugar Technologists Association; 1967. p. 190–6.

    Google Scholar 

  • Buck GB, Korndorfer G, Datnoff LE. Extractors for estimating plant available silicon from potential silicon fertilizer sources. J Plant Nutr. 2011;34:272–82.

    Article  CAS  Google Scholar 

  • Conley DJ. An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem. 1998;63:39–48.

    Article  CAS  Google Scholar 

  • Davy H. The elements of agricultural chemistry. Hartford: Hudson and Co.; 1819.

    Google Scholar 

  • DeMaster DJ. The supply and accumulation of silica in the marine environments. Geochim Cosmochim Acta. 1981;45:1715–32.

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE. Standard methods for the examination of water and wastewater. 19th ed. Washington, DC: American Public Health Association; 1995.

    Google Scholar 

  • Elawad SH, Gascho GJ, Street JJ. Response of sugarcane to silicate source and rate. I. Growth and yield. Agric J. 1982;74:481–4.

    CAS  Google Scholar 

  • Elgawhary SM, Lindsay LW. Solubility of silica in soils. Soil Sci Soc Am Proc. 1972;36:439–42.

    Article  CAS  Google Scholar 

  • Elliott CL, Snyder GH. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem. 1991;39:1118–9.

    Article  CAS  Google Scholar 

  • Follett EAC, McHardy WJ, Mitchell BD, Smith BFL. Chemical dissolution techniques in the study of soil clays: Part I. Clay Miner. 1965;6:23–34.

    Article  CAS  Google Scholar 

  • Foster MD. The determination of free silica and free alumina in montmorillonites. Geochim Cosmochim Acta. 1953;3:143–54.

    Article  CAS  Google Scholar 

  • Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD. Soil and plant silicon and silicate response by sugarcane. Soil Sci Soc Am Proc. 1967;31:775–9.

    Article  CAS  Google Scholar 

  • Fox RL, Silva JA. Symptoms of plant nutrition: silicon, an agronomically essential nutrient for sugarcane. Illustrated Concepts in Tropical Agriculture. Dept. of Agronomy and Soil Sci., College of Tropical Agriculture and Human Resources, University of Hawaii; 1978.

    Google Scholar 

  • Gascho GJ. Silicon Sources for Agriculture. In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier Science B.V.; 2001. p. 197–207.

    Chapter  Google Scholar 

  • Gillman GP, Bell LC. Soil solution studies on weathered soils from tropical North Queensland. Aust J Soil Res. 1978;16:67–77.

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD. Determination of the silicon concentration in plant material using Tiron extraction. New Phytol. 2010;188:902–6.

    Article  CAS  PubMed  Google Scholar 

  • Hallmark CT, Wilding LP, Smeck NE. Silicon. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis. Part 2: Chemical and microbiological properties, Agronomy monograph no. 9. 2nd ed. Madison: The America Society of Agronomy and Soil Science Society of America; 1982. p. 263–73.

    Google Scholar 

  • Hashimoto J, Jackson ML. Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Proceedings of the 7th National Conference on Clays and Clay Minerals; 1958 Oct 20–23; Washington, DC; 1960. p. 102–13.

    Google Scholar 

  • Haynes RJ, Belyaeva ON, Kingston G. Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci. 2013;176:238–48.

    Article  CAS  Google Scholar 

  • Haysom MBC, Chapman LS. Some aspects of the calcium silicate trials at Mackay. Proc Qld Soc Sugar Cane Technol. 1975;42:117–22.

    CAS  Google Scholar 

  • Haysom MB, Kingston G. Soil analysis for predicting sugarcane yield response to silicon. In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier Science; 2001. p. 373.

    Google Scholar 

  • He DY, Zang HL, Zhang XP. The effect of silicate slags on rice in paddy soils derived from red earth. Acta Pedol Sin. 1980;17:355–63 (In Chinese with English abstract).

    Google Scholar 

  • Hong XJ, Yang J, Yang XH. The effect of different extractants on silicon content extracted from paddy soils. Commun Agric Sci Technol. 2011;11:31–3 (In Chinese).

    Google Scholar 

  • Hurney AP. A progress report on the calcium silicate investigations. Proc Qld Soc Sugar Cane Technol. 1973;40:109–13.

    CAS  Google Scholar 

  • Iler RK. The chemistry of silica. New York: Wiley; 1979.

    Google Scholar 

  • Imaizumi K, Yoshidai S. Edaphological studies on the silicon supplying power of paddy soils. Bull Natl Inst Agric Sci Tokyo. 1958;B8:261–304.

    Google Scholar 

  • Jones RL, Dreher GB. Chapter 22. In: Bigham JM, editor. Methods of soil analysis, Part 3: Chemical methods. Soil science society of America. Book series No. 5. Madison: The Soil Science Society of America and America Society of Agronomy; 1996.

    Google Scholar 

  • Kanamugire A, Meyer JH, Haynes RJ, Naidoo G, Keeping MG. An assessment of soil extraction methods for predicting the silicon requirement of sugarcane. Proc South Afr Sugar Technol Assoc. 2006;80:287–90.

    Google Scholar 

  • Kato N, Owa N. Dissolution of slag fertilizers in a paddy soil and Si uptake by rice plants. Soil Sci Plant Nutr. 1997;43:329–41.

    Article  CAS  Google Scholar 

  • Kato N, Sumida H. Evaluation of silicon availability in paddy soils by an extraction using a pH 6.2 phosphate buffer solution. Annual report of the Tohoku Agricultural Experiment Station for 1999; 2000. p. 73–5.

    Google Scholar 

  • Kawaguchi K. Tropical paddy soils. Jpn Agric Res Quart. 1966;1:7–11.

    Google Scholar 

  • Khalid RA, Silva JA, Fox RL. Residual effects of calcium silicate in tropical soils. I. Fate of silicon during five years of cropping. Soil Sci Soc Am Proc. 1978;42:89–94.

    Article  CAS  Google Scholar 

  • Kilmer VJ. Silicon. In: Black CA, editor. Methods of soil analysis, Part 2: Chemical and microbiological properties, Agronomy series, No. 9. Madidon: America Society Agronomy; 1965. p. 959–62.

    Google Scholar 

  • Koning E, Epping E, Van Raaphorst W. Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat Geochem. 2002;8:37–67.

    Article  CAS  Google Scholar 

  • Korndörfer GH, Coelho NM, Mizutani CT, Snyder GH. Evaluation of soil extractants for silicon availability in upland rice. In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier Science; 2001. p. 376.

    Google Scholar 

  • Korndörfer GH, Pereira HS. Silicon testing, silicon fertilizer manufacturing techniques and standards. Proceedings of the 5th International Conference on Silicon in Agriculture; 2011 Sept 11–19; Beijing, China; 2011. p. 89–98.

    Google Scholar 

  • Kraska JE, Breitenbeck GA. Simple, robust method for quantifying silicon in plant tissue. Commun Soil Sci Plant Anal. 2010;41:2075–85.

    Article  CAS  Google Scholar 

  • Li CH, Zhou W, Rong XN. Standardization of analytical method for available SiO2 in silicon-containing fertilizer. Phosphate Compd Fertil. 2004;19:60–1 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Lian S. Silica fertilization of rice. In: The fertility of paddy soils and fertilizer applications for rice. Taipei: Food Fertilizer Technology Center; 1976. p. 197–220.

    Google Scholar 

  • Liang YC, Ma TS, Li FJ, Feng YJ. Silicon availability and response of rice and wheat to silicon in calcareous soils. Commun Soil Sci Plant Anal. 1994;25:2285–97.

    Article  CAS  Google Scholar 

  • Lindsay WL. Chemical equilibrium in soil. New York: Wiley; 1979.

    Google Scholar 

  • Liu MD. Methods for assessing silicon-supplying capacity in paddy soils and efficacy of silicon fertilizers on rice. PhD dissertation, Shenyang Agricultural University; 2002.

    Google Scholar 

  • Ma JF, Takahashi E. Soil, fertilizer, and plant silicon research in Japan. Amsterdam: Elsevier; 2002.

    Google Scholar 

  • Ma TS, Qian ZR, Zhang ZF, Shu JM, Wang HY. Study on the paddy soils V. Preliminary study on the availability of silica in paddy soil of Jiangsu hilly area and the effect of slag silica fertilizer. J Nanjing Agric Univ. 1985;4:67–73 (In Chinese with English abstract).

    Google Scholar 

  • Maxwell W. Lavas and soils of the Hawaiian islands. Honolulu: Hawaiian Sugar Planters’ Association; 1898. p. 189.

    Google Scholar 

  • Medina-Gonzales OA, Fox RL, Bosshart RP. Solubility and availability sugarcane (Saccharum Spp.) of two silicate materials. Fertil Res. 1988;16:3–13.

    Article  CAS  Google Scholar 

  • Menzies NW, Bell LC. Evaluation of the influence of sample preparation and extraction technique on soil solution composition. Aust J Soil Res. 1988;26:451–64.

    Article  CAS  Google Scholar 

  • Meyer ML, Bloom PR. Lithium metaborate fusion for silicon, calcium, magnesium, and potassium analysis of wild rice. Plant Soil. 1993;153:281–5.

    Article  CAS  Google Scholar 

  • Mortlock RA, Froelich PN. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 1989;36:1415–26.

    Article  CAS  Google Scholar 

  • Nayar PK, Misra AK, Patnaik S. Rapid microdetermination of silicon in rice plant. Plant Soil. 1975;42:491–4.

    Article  CAS  Google Scholar 

  • Nayer PK, Misra AK, Patnaik S. Evaluation of silica-supplying power of soils for growing rice. Plant Soil. 1977;47:487–94.

    Article  Google Scholar 

  • NIAES. Official methods of analysis of fertilizers, vol. 124. Tsukuba: National Institute of Agro-environmental Sciences, Foundation Nohrin Kohsaikai; 1987. p. 36–7.

    Google Scholar 

  • Nonaka K, Takahashi K. A method of measuring available silicon in paddy soils. Jpn Agric Res Quart. 1988;22:91–5.

    CAS  Google Scholar 

  • Nonaka K, Takahashi K. A method of assessing the need of silicate fertilizers in paddy soils. XIV International Congress of Soil Science; Kyoto, Japan 4; 1990. p. 513–514.

    Google Scholar 

  • Park CS. Past and future advances in silicon research in the Republic of Korea. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier; 2001. p. 359–71.

    Chapter  Google Scholar 

  • Pereira HS, Korndörfer GH, Moura WF, Correa GF. Extratores de silício disponível em escórias e fertilizantes. Revista Brasileira Ciencia do Solo. 2003;27:265–74 (In Portuguese).

    Article  CAS  Google Scholar 

  • Qin RC. Effect of silicon fertilizer on disease resistance and yield increase in rice. Zhejiang Agric Sci. 1979;1:12–5 (In Chinese).

    Google Scholar 

  • Ramsey MH, Potts PJ, Webb PC, Watkins P, Watson JS, Coles BJ. An objective assessment of analytical method precision: comparison of ICP-AES and XRF for the analysis of silicate rocks. Chem Geol. 1995;124:1–19.

    Article  CAS  Google Scholar 

  • Reidinger S, Ramsey MH, Hartley SE. Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol. 2012;195:699–706.

    Article  CAS  PubMed  Google Scholar 

  • Robinson WO. Method and procedure of soil analysis used in the Division of Soil Chemistry and Physics. USDA Circ. 139. Washington, DC: USDA; 1930.

    Google Scholar 

  • Robinson WO. The fusion analysis of soils. Soil Sci. 1945;59:7–11.

    Article  CAS  Google Scholar 

  • Saito K, Yamamoto A, Sa TM, Saigusa M. Rapid, micro-methods to estimate plant silicon content by dilute hydrofluoric acid extraction and spectrometric molybdenum method. I. Silicon in rice plants and molybdenum yellow method. Soil Sci Plant Nutr. 2005;51:29–36.

    Article  CAS  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry. 2006;80:89–108.

    Article  CAS  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE. Silicon management and sustainable rice production. Adv Agron. 1997;58:151–99.

    CAS  Google Scholar 

  • Sebastian D, Rodrigues H, Kinsey C, Korndörfer G, Pereira H, Buck G, Datnoff L, Miranda S, Provance-Bowley M. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation. J Assoc Off Anal Chem Int (AOAC Int). 2013;96:251–9.

    CAS  Google Scholar 

  • Snyder GH. Methods for silicon analysis in plants, soils, and fertilizers. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Silicon in agriculture. Amsterdam: Elsevier; 2001. p. 185–96.

    Chapter  Google Scholar 

  • Struve GA. De silicia in plantis nonnullis. Berolini: Dissertaion; 1835.

    Google Scholar 

  • Sumida H. Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice plants in cool regions in Japan. Bull Tohoku Natl Agric Exp Stn. 1992;85:1–46 (In Japanese with English summary).

    Google Scholar 

  • Takahashi K. Effects of slags on the growth and the silicon uptake by rice plants and the available silicates in paddy soils. Bull Shikoku Agric Exp Stn. 1981;38:75–114 (In Japanese with English summary).

    CAS  Google Scholar 

  • Takahashi K, Nonaka K. Available silicates in paddy soils. Part 2. Development of method of measuring available silicates and its application to soil silicate analysis. Bull Shikoku Agric Exp Stn. 1986;47:16–39 (In Japanese with English summary).

    CAS  Google Scholar 

  • Takijima Y, Wijayaratna HMS, Seneviratne CJ. Nutrient deficiency and physiological disease of lowland rice in Ceylon. III. Effect of silicate fertilizers and dolomite for increasing rice yields. Soil Sci Plant Nutr. 1970;16:11–6.

    Article  CAS  Google Scholar 

  • Ueda K, Yamaoka M. Studies on degraded paddy soils. VII. Examination of a method for determining available silicate in soil. Jpn J Soil Fertil. 1959;30:393–6 (In Japanese).

    CAS  Google Scholar 

  • Wang C, Schuppli PA. Determining ammonium oxalate-extractable Si in soils. Can J Soil Sci. 1986;66:751–5.

    Article  CAS  Google Scholar 

  • Wang FH, Long RJ, Hu DJ. Preliminary study on the method of determining available silicon in Si Ca fertilizer. J Huazhong Agric Univ. 1995;14:537–41 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Weaver RM, Syers JK, Jackson ML. Determination of silica in citrate-bicarbonate-dithionite extracts of soils. Soil Sci Soc Am Proc. 1968;32:497–501.

    Article  CAS  Google Scholar 

  • Wickramasinghe DB (1994) The solubility of rice straw silica and its use as a silicon source in paddy cultivation. PhD thesis, Department of Soil Science, University of Reading.

    Google Scholar 

  • Wong Y, Cheong Y, Halais P. Needs of sugarcane for silicon when growing in highly weathered latosols. Explan Agric. 1970;6:99–106.

    Article  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory manual for physiological studies of rice. 3rd ed. Los Baños: International Rice Research Institute; 1976. p. 17–22.

    Google Scholar 

  • Young RS. Chemical analysis in extractive metallurgy. London: Griffin; 1971. p. 302–4.

    Google Scholar 

  • Zang HL, Zhang XP, He DY. On the silicon supplying capacity of paddy soils in South China. Acta Pedol Sin. 1982;19:131–40 (In Chinese with English abstract).

    Google Scholar 

  • Zhang XP, Zang HL. Methods for determining soil available silicon. Soils. 1982;5:188–92 (In Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015). Analysis of Silicon in Soil, Plant and Fertilizer. In: Silicon in Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9978-2_2

Download citation

Publish with us

Policies and ethics