Skip to main content

Stem Properties of Amniotic Membrane-Derived Cells

  • Chapter
Amniotic Membrane

Abstract

New avenues in the general area of research into stem cells have been opened in recent years through the discovery that cells with stem properties can be isolated from the human placenta, which represents an ethically sound, easily procured and plentiful source, and is therefore an attractive alternative to other stem cell sources. In particular, the human amniotic membrane, which already has a long history of use as a surgical material, is also proving to be a valuable reserve of cells for research and development of novel therapeutic approaches for regenerative/reparative medicine. In this chapter we will describe the two main amniotic membrane-derived cell populations, i.e. epithelial cells and mesenchymal stromal/stem cells, and some of their sub-populations, in terms of their stem properties which have been discovered to date. We will explore reasons why these amniotic membrane-derived cell populations cannot be considered “true” stem cells, at least in the classical sense of the term, even though they have some features of progenitor-like cells and certainly display some very interesting biological properties both for research purposes and for potential clinical applications. We will also bring into discussion the fact that much still remains to be further investigated and even discovered in this evolving research field, although despite this, the very promising results achieved so far are certainly very encouraging as a basis for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis J (1910) Skin transplantation. Johns Hopkins Hosp Rep 15:307–396

    Google Scholar 

  2. Caruso M, Silini A, Parolini O (2013) The human amniotic membrane: a tissue with multifaceted properties and different potential clinical applications. In: Cetrulo KJ, Cetrulo CL, Taghizadeh RR (eds) Perinatal stem cells, 2nd edn. Wiley, Hoboken, pp 177–195

    Chapter  Google Scholar 

  3. Parolini O, Soncini M (2006) Human placenta: a source of progenitor/stem cells? J Reprod Med Endocrinol 3:117–126

    CAS  Google Scholar 

  4. Blau H, Brazelton T, Weimann J (2014) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  Google Scholar 

  5. Seaberg RM, van der Kooy D (2014) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  Google Scholar 

  6. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lander AD (2009) The “stem cell” concept: is it holding us back? J Biol 8:70

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brunt KR, Weisel RD, Li R (2012) Stem cells and regenerative medicine – future perspectives. Can J Physiol Pharmacol 90:327–335

    Article  CAS  PubMed  Google Scholar 

  9. Tajbakhsh S (2009) Stem cell: what’s in a name? Nat Rep Stem Cells doi:10.1038/stemcells.2009.90

  10. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  11. Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225

    Article  CAS  PubMed  Google Scholar 

  12. Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  PubMed  Google Scholar 

  13. Ilancheran S, Michalska A, Peh G et al (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    Article  CAS  PubMed  Google Scholar 

  14. Parolini O, Alviano F, Bagnara GP et al (2008) Concise review – isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311

    Article  PubMed  Google Scholar 

  15. Miki T, Mitamura K, Ross MA et al (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75:91–96

    Article  CAS  PubMed  Google Scholar 

  16. Echigoya T, Takeuchi M, Hori H et al (2008) Human amniotic epithelium as an unlimited source of Oct4-expressing totipotent stem cell subset. Open Biotechnol J 2:102–110

    Article  Google Scholar 

  17. Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    CAS  PubMed  Google Scholar 

  18. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  19. Miki T, Marongiu F, Ellis EC et al (2007) Isolation of amniotic epithelial stem cells. Curr Protoc Cell Biol Chapter 1:Unit 1E 3

    Google Scholar 

  20. Barbati A, Mameli MG, Sidoni A, Di Renzo GC (2012) Amniotic membrane: separation of amniotic mesoderm from amniotic epithelium and isolation of their respective mesenchymal stromal and epithelial cells. Curr Protoc Stem Cell Biol 20:1E.8.1–1E.8.15

    Google Scholar 

  21. Soncini M, Vertua E, Gibelli L et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    Article  CAS  PubMed  Google Scholar 

  22. Niknejad H, Peirovi H, Ahmadiani A et al (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater 19:22–29

    CAS  PubMed  Google Scholar 

  23. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  24. Murphy S, Rosli S, Acharya R et al (2010) Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 13:1E.6.1–1E.6.25

    Google Scholar 

  25. Pratama G, Vaghjiani V, Tee JY et al (2011) Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 6:1–12

    Article  Google Scholar 

  26. Bilic G, Zeisberger SM, Mallik AS et al (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17:955–968

    Article  PubMed  Google Scholar 

  27. Evron A, Goldman S, Shalev E (2011) Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages. Int J Stem Cells 4:123–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142

    Article  CAS  PubMed  Google Scholar 

  29. Portmann-Lanz CB, Schoeberlein A, Huber A et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673

    Article  CAS  PubMed  Google Scholar 

  30. Stadler G, Hennerbichler S, Lindenmair A et al (2008) Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 10:743–752

    Article  CAS  PubMed  Google Scholar 

  31. Marongiu F, Gramignoli R, Sun Q et al (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol. 2010 Mar; Chapter 1:Unit 1E.5. doi: 10.1002/9780470151808.sc01e05s12

  32. Díaz-Prado S, Muiños-López E, Hermida-Gómez T et al (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857

    Article  PubMed  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: the international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  34. Díaz-Prado S, Muiños-López E, Hermida-Gómez T et al (2011) Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 81:162–171

    Article  PubMed  Google Scholar 

  35. Kim J, Kang HM, Kim H et al (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9:581–594

    Article  CAS  PubMed  Google Scholar 

  36. Tamagawa T, Ishiwata I, Saito S (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 17:125–130

    Article  PubMed  Google Scholar 

  37. Tamagawa T, Oi S, Ishiwata I et al (2007) Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 20:77–84

    Article  PubMed  Google Scholar 

  38. Bailo M, Soncini M, Vertua E et al (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448

    Article  PubMed  Google Scholar 

  39. Brvanlou AH, Gage FH, Jaenisch R et al (2003) Setting standards for human embryonic stem cells. Science 300:913–916, 80-

    Article  Google Scholar 

  40. Moodley Y, Ilancheran S, Samuel C et al (2010) Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 182:643–651

    Article  CAS  PubMed  Google Scholar 

  41. Nogami M, Tsuno H, Koike C et al (2012) Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 93(12):1221–8

    Google Scholar 

  42. Fatimah SS, Tan GC, Chua K et al (2013) Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells. Microvasc Res 86:21–29

    Article  CAS  PubMed  Google Scholar 

  43. Ryan JM, Pettit AR, Guillot PV et al (2013) Unravelling the pluripotency paradox in fetal and placental mesenchymal stem cells: Oct-4 expression and the case of the emperor’s new clothes. Stem Cell Rev Rep 9:408–421

    Article  CAS  Google Scholar 

  44. Manuelpillai U, Moodley Y, Borlongan C, Parolini O (2011) Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis? Placenta 32:S320–S325

    Article  CAS  PubMed  Google Scholar 

  45. Magatti M, De Munari S, Vertua E et al (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26:182–192

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi M, Yakuwa T, Sasaki K et al (2008) Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant 17:291–301

    Article  CAS  PubMed  Google Scholar 

  47. Maruyama N, Kokubo K, Shinbo T et al (2013) Hypoxia enhances the induction of human amniotic mesenchymal side population cells into vascular endothelial lineage. Int J Mol Med 32:315–322

    CAS  PubMed  Google Scholar 

  48. Sarugaser R, Hanoun L, Keating A et al (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE 4:1–4

    Article  Google Scholar 

  49. Keating A (2014) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  Google Scholar 

  50. Akle C, Adinolfi M, Welsh K et al (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005

    Article  CAS  PubMed  Google Scholar 

  51. Tylki-Szymańska A, Maciejko D, Kidawa M et al (1985) Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases. J Inherit Metab Dis 8:101–104

    Article  PubMed  Google Scholar 

  52. Yeager AM, Singer HS, Buck JR et al (1985) A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases. Am J Med Genet 22:347–355

    Article  CAS  PubMed  Google Scholar 

  53. Scaggiante B, Pineschi A, Sustersich M et al (1987) Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 44(1):59–61

    Google Scholar 

  54. Sakuragawa N, Yoshikawa H, Sasaki M (1992) Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 14:7–11

    Article  CAS  PubMed  Google Scholar 

  55. Tsuji H, Miyoshi S, Ikegami Y et al (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 106:1613–1623

    Article  CAS  PubMed  Google Scholar 

  56. Sakuragawa N, Thangavel R, Mizuguchi M et al (1996) Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 209:9–12

    Article  CAS  PubMed  Google Scholar 

  57. Ishii T, Ohsugi K, Nakamura S et al (1999) Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett 268:131–134

    Article  CAS  PubMed  Google Scholar 

  58. Sakuragawa N, Misawa H, OhsugI K et al (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232:53–56

    Article  CAS  PubMed  Google Scholar 

  59. Elwan MA (1998) Synthesis of dopamine from l-3,4-dihydroxyphenylalanine by human amniotic epithelial cells. Eur J Pharmacol 354:R1–R2

    Article  CAS  PubMed  Google Scholar 

  60. Sakuragawa N, Enosawa S, Ishii T et al (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 45:171–176

    Article  CAS  PubMed  Google Scholar 

  61. Takashima S, Ise H, Zhao P et al (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84

    Article  CAS  PubMed  Google Scholar 

  62. Marongiu F, Gramignoli R, Dorko K et al (2011) Hepatic differentiation of amniotic epithelial cells. Hepatology 53:1719–1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tee JY, Vaghjiani V, Liu YH et al (2013) Immunogenicity and immunomodulatory properties of hepatocyte-like cells derived from human amniotic epithelial cells. Curr Stem Cell Res Ther 8:91–99

    Article  CAS  PubMed  Google Scholar 

  64. Alviano F, Fossati V, Marchionni C et al (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:1–14

    Article  Google Scholar 

  65. Chen M, Wang X, Ye Z et al (2011) A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32:7532–7542

    Article  CAS  PubMed  Google Scholar 

  66. Bertoldi S, Farè S, Denegri M et al (2010) Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. J Mater Sci Mater Med 21:1005–1011

    Article  CAS  PubMed  Google Scholar 

  67. Zhao P, Ise H, Hongo M et al (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535

    Article  PubMed  Google Scholar 

  68. König J, Huppertz B, Desoye G et al (2012) Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells. Stem Cells Dev 21:1309–1320

    Article  PubMed  Google Scholar 

  69. Paracchini V, Carbone A, Colombo F et al (2012) Amniotic mesenchymal stem cells: a new source for hepatocyte-like cells and induction of CFTR expression by coculture with cystic fibrosis airway epithelial cells. J Biomed Biotechnol 575471:1–15

    Article  Google Scholar 

  70. Tamagawa T, Ishiwata I, Sato K, Nakamura Y (2009) Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 22:55–63

    Article  PubMed  Google Scholar 

  71. Sakuragawa N, Kakinuma K, Kikuchi A et al (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78:208–214

    Article  CAS  PubMed  Google Scholar 

  72. Tamagawa T, Ishiwata I, Ishikawa H, Nakamura Y (2008) Induced in vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell 21:38–45

    Article  PubMed  Google Scholar 

  73. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  74. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  CAS  PubMed  Google Scholar 

  75. Yamanaka S (2014) Induced pluripotent stem cells: past, present and future. Cell Stem Cell 10:678–684

    Article  Google Scholar 

  76. Nagata S, Toyoda M, Yamaguchi S et al (2009) Efficient reprogramming of human and mouse primary extra-embryonic cells to pluripotent stem cells. Genes Cells 14:1395–1404

    Article  CAS  PubMed  Google Scholar 

  77. Cai J, Li W, Su H et al (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285:11227–11234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zhao H, Li Y, Jin H et al (2010) Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 80:123–129

    Article  CAS  PubMed  Google Scholar 

  79. Easley CA, Miki T, Castro CA et al (2012) Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts. Cell Reprogram 14:193–203

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Ge X, Wang I-NE, Toma I et al (2012) Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 21:2798–27808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Hodges RJ, Jenkin G, Hooper SB et al (2012) Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol 206:448.e8–448.e15

    Article  Google Scholar 

  82. Kim S-W, Zhang H-Z, Kim CE et al (2012) Amniotic mesenchymal stem cells have robust angiogenic properties and are effective in treating hindlimb ischaemia. Cardiovasc Res 93:525–534

    Article  CAS  PubMed  Google Scholar 

  83. Wei JP, Nawata M, Wakitani S et al (2009) Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells 11:19–26

    Article  CAS  PubMed  Google Scholar 

  84. Kim S-W, Zhang H-Z, Guo L et al (2012) Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS ONE 7:e41105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Parolini O, Caruso M (2011) Review – preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 25:S186–S195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support over recent years from Fondazione Poliambulanza, Fondazione Cariplo grant n. 2011-0495, Fondazione Cariplo grant n. 2012-0842, and Fondazione della Comunità Bresciana Onlus. We sincerely thank Dr. Marco Evangelista for help in editing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Parolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caruso, M., Cargnoni, A., Parolini, O. (2015). Stem Properties of Amniotic Membrane-Derived Cells. In: Mamede, A., Botelho, M. (eds) Amniotic Membrane. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9975-1_4

Download citation

Publish with us

Policies and ethics