Skip to main content

Overview

  • Chapter
  • First Online:
Energy Demand in Industry

Part of the book series: Green Energy and Technology ((GREEN))

  • 658 Accesses

Abstract

This book addresses the impact of different input factors of production, market, consumer, and producers’ characteristics on the industrial sector’s energy demand for South Korea during the period 1970–2007. The book aims at formulating an energy demand structure for the South Korean industrial sector as a tool to enable producers and policy makers to evaluate different alternatives toward reducing energy consumption, and using energy in an efficient way. Industrial policy decision makers need to understand the importance of the energy input in the industrial production structure, in order to assess and formulate necessary measures for energy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable & Sustainable Energy Reviews, 15(1), 150–168. doi:10.1016/j.rser.2010.09.003.

  • Allan, G., Hanley, N., McGregor, P., Swales, K., & Turner, K. (2007). The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom. Energy Economics, 29(4), 779–798. doi:10.1016/j.eneco.2006.12.006.

    Article  Google Scholar 

  • Allen, R. G. D. (1938). Mathematical analysis for economists. New York, USA: St. Martin’s Press.

    MATH  Google Scholar 

  • Allen, W. B., Weigelt, K., Doherty, N., & Mansfield, E. (2009). Managerial economics: Theory, applications, and cases. New York, USA: Norton.

    Google Scholar 

  • Apostolakis, B. E. (1990). Energy-capital substitutability/complementarity. Energy Economics, 12(1), 48–58. doi:10.1016/0140-9883(90)90007-3.

    Article  Google Scholar 

  • Benjamin, D., & Meza, F. (2009). Total factor productivity and labor reallocation: The case of the Korean 1997 crisis. B E Journal of Macroeconomics, 9(1), 1–39. doi:10.2202/1935-1690.1625.

    Article  Google Scholar 

  • Berndt, E. R., & Wood, D. O. (1975). Technology, prices, and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259–268.

    Article  Google Scholar 

  • Berndt, E. R., & Wood, D. O. (1979). Engineering and econometric interpretations of energy-capital complementarity. American Economic Review, 69(3), 342–354.

    Google Scholar 

  • Cho, W. G., Nam, K., & Pagan, J. A. (2004). Economic growth and interfactor/interfuel substitution in Korea. Energy Economics, 26(1), 31–50. doi:10.1016/j.eneco.2003.04.001.

    Article  Google Scholar 

  • Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28–45. doi:10.2307/1927992.

    Article  Google Scholar 

  • Coelli, T., & Battese, R. D. G. (1998). An introduction to efficiency and productivity analysis. London, England: Kluwer Academic Publisher.

    Book  MATH  Google Scholar 

  • Dale, A., Wathan, J., & Higgins, V. (2008). Secondary analysis of quantitative data sources. In P. Alasuutari, L. Bickman, & J. Brannen (Eds.), The sage handbook of social research methods (pp. 520–535). London: Sage.

    Google Scholar 

  • Dargay, J. M. (1983). The demand for energy in Swedish manufacturing-industries. Scandinavian Journal of Economics, 85(1), 37–51. doi:10.2307/3439909.

  • Dietmair, A., & Verl, A. (2009). A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. International Journal of Sustainable Engineering, 2(2), 123–133. doi:10.1080/19397030902947041.

    Article  Google Scholar 

  • Dimitropoulos, J. (2007). Energy productivity improvements and the rebound effect: An overview of the state of knowledge. Energy Policy, 35(12), 6354–6363. doi:10.1016/j.enpol.2007.07.028.

    Article  Google Scholar 

  • EIA. (2011). International Energy Outlook. U.S. Energy Information Administration. Retrieved from EIA http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf.

  • EIA. (n.d.). International Energy Statistics-Units. U.S. Energy Information Administration. Retrieved from EIA http://www.eia.gov/cfapps/ipdbproject/docs/unitswithpetro.cfm.

  • EPA. (2007). Energy Trends in Selected Manufacturing Sectors: Opportunities and Challenges for Environmentally Preferable Energy Outcomes. Enviromental Protection Agency. Retrieved from EPA http://www.epa.gov/sectors/pdf/energy/report.pdf.

  • Favennec, J. P. (2005). Oil and natural gas supply for Europe. Catalysis Today, 106(1–4), 2–9. doi:10.1016/j.cattod.2005.07.171.

  • Field, B. C., & Grebenstein, C. (1980). Capital-energy substitution in U.S. manufacturing. The Review of Economics and Statistics, 62(2), 207. doi:10.2307/1924746.

    Article  Google Scholar 

  • Finley, M. (2012). The oil market to 2030: Implications for investment and policy. Economics of Energy and Environmental Policy, 1(1), 25–36.

    Article  Google Scholar 

  • Friedemann, M., Staake, T., & Weiss, M. (2010). Ict for green: How computers can help us to conserve energy. Paper presented at the proceedings of the 1st international conference on energy-efficient computing and networking, Passau, Germany.

    Google Scholar 

  • Frondel, M., & Schmidt, C. M. (2002). The capital-energy controversy: An artifact of cost shares? Energy, 23(3), 53–79.

    Google Scholar 

  • Fukao, K., Miyagawa, T., & Pyo, H. K. (2009). Estimates of multifactor productivity, ICT contributions and resource reallocation effects in japan and korea. RIETI Discussion Paper Series 09-E-021. Retrieved from The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/jp/publications/dp/09e021.pdf.

  • Griffin, J. M., & Gregory, P. R. (1976). An intercountry translog model of energy substitution responses. The American Economic Review, 66(5), 845–857. doi:10.2307/1827496.

    Google Scholar 

  • Heshmati, A. (1996). On the single and multiple time trends representation of technical change. Applied Economics Letters, 3(8), 495–499. doi:10.1080/135048596356104.

    Article  Google Scholar 

  • Heshmati, A. (2001). Labour demand and efficiency in Swedish savings banks. Applied Financial Economics, 11(4), 423–433. doi:10.1080/096031001300313983.

    Article  Google Scholar 

  • Heshmati, A. (2003). Productivity growth, efficiency and outsourcing in manufacturing and service industries. Journal of Economic Surveys, 17(1), 79–112. doi:10.1111/1467-6419.00189.

    Article  MathSciNet  Google Scholar 

  • Heshmati, A. (2013). Demand, customer base-line and demand response in the electricity market: A survey. Journal of Economic Surveys, n/a–n/a. doi:10.1111/joes.12033.

  • Hicks, J. R. (1961). Marshall’s third rule: A further comment. Oxford Economic Papers, 13(3), 262–265.

    Google Scholar 

  • Imran, K., & Siddiqui, M. M. (2010). Energy consumption and economic growth: A case study of three SAARC countries. European Journal of Social Sciences, 16(2), 206–213.

    Google Scholar 

  • Johnson, B. (2001). Toward a new classification of nonexperimental quantitative research. Educational Researcher, 30(2), 3–13.

    Article  Google Scholar 

  • Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86. doi:10.1016/0304-4076(78)90006-4.

    Article  MathSciNet  MATH  Google Scholar 

  • Just, R. E., & Pope, R. D. (1979). Production function estimation and related risk considerations. American Journal of Agricultural Economics, 61(2), 276–284. doi:10.2307/1239732.

    Article  Google Scholar 

  • Kim, B. C., & Labys, W. C. (1988). Application of the translog model of energy substitution to developing-countries—the case of Korea. Energy Economics, 10(4), 313–323. doi:10.1016/0140-9883(88)90043-6.

    Article  Google Scholar 

  • Knut, S., & Hammond, P. (1995). Mathematics for economic analysis. Prentice Hall.

    Google Scholar 

  • Koetse, M. J., de Groot, H. L. F., & Florax, R. J. G. M. (2008). Capital-energy substitution and shifts in factor demand: A meta-analysis. Energy Economics, 30(5), 2236–2251. doi:10.1016/j.eneco.2007.06.006.

    Article  Google Scholar 

  • Koopmants, T. C. (1951). An analysis of production as an efficient combination of activities. In T. C. Koopmants (Ed.), Activity analysis of production and allocation (pp. 33–97). New York: USA Wiley.

    Google Scholar 

  • Kuemmel, R., Stresin, R., Lindenberger, D., & Journal, B. (2008). Co-integration of output, capital, labor and energy. The European Physical, 66(2), 279–287.

    Article  MATH  Google Scholar 

  • Kumbhakar, S. C. (1997). Efficiency estimation with heteroscedasticity in a panel data model. Applied Economics, 29(1 SRC—GoogleScholar), 379–386.

    Google Scholar 

  • Kumbhakar, S. C., Heshmati, A., & Hjalmarsson, L. (1997). Temporal patterns of technical efficiency: Results from competing models. International Journal of Industrial Organization, 15(5), 597–616. doi:10.1016/S0167-7187(96)01053-3.

    Article  Google Scholar 

  • Kumbhakar, S. C., Hjalmarsson, L., & Heshmati, A. (2002). How fast do banks adjust? A dynamic model of labour-use with an application to Swedish banks. Journal of Productivity Analysis, 18(1), 79–102.

    Article  Google Scholar 

  • Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. Cambridge: U. K.

    Book  MATH  Google Scholar 

  • Lomax, R. G. (2007). Statistical concepts: A second course for education and the behavioral sciences (3rd ed.). Lawrence Erlbaum Associates: Mahwah, NJ.

    Google Scholar 

  • Lovell, C. A. K. (1996). Applying efficiency measurement techniques to the measurement of productivity change. Journal of Productivity Analysis, 7(2–3), 329–340.

    Article  Google Scholar 

  • Mahony, M., Timmer, M. P., & Klems, U. E. (2009). Output, input and productivity measures at the industry level. 119(538 SRC—GoogleScholar), F374–F403.

    Google Scholar 

  • Mukherjee, K. (2008). Energy use efficiency in U.S. manufacturing: A nonparametric analysis. Energy Economics, 30(1), 76–96. doi:10.1016/j.eneco.2006.11.004.

    Article  Google Scholar 

  • O’Mahony, M., & Timmer, M. P. (2009). Output, input and productivity measures at the industry level: The EU KLEMS database. The Economic Journal, 119(538), F374–F403. doi:10.1111/j.1468-0297.2009.02280.x.

    Article  Google Scholar 

  • O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690. doi:10.1007/s11135-006-9018-6.

  • Park, C., Kwon, K., Kim, W., Min, B., Park, S., Sung, I., & Seok, J. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173. doi:10.1007/s12541-009-0107-z.

    Article  Google Scholar 

  • Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2 SRC—GoogleScholar), 169–179.

    Google Scholar 

  • Ramaswami, B. (1992). Production risk and optimal input decisions. American Journal of Agricultural Economics, 74(4), 860–869. doi:10.2307/1243183.

    Article  Google Scholar 

  • Sahu, S. K., & Narayanan, K. (2011). Total factor productivity and energy intensity in Indian manufacturing : A cross-sectional study. International Journal of Energy Economics and Policy, 1(2 SRC—GoogleScholar), 47–58.

    Google Scholar 

  • Saicheua, S. (1987). Input substitution in Thailand’s manufacturing sector: Implications for energy policy. Energy Economics 9(1 SRC—GoogleScholar), 55–63.

    Google Scholar 

  • Solow, R. M. (1957). Technical change and the aggregate production function. Review of Economics and Statistics, 39(3), 312–320. doi:10.2307/1926047.

    Article  MathSciNet  Google Scholar 

  • Soytas, U., & Sari, R. (2009). Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecological Economics, 68(6), 1667–1675. doi:10.1016/j.ecolecon.2007.06.014.

    Article  Google Scholar 

  • Stern, D. I. (2011). The role of energy in economic growth. Annals of the New York Academy of Sciences, 1219(1), 26–51. doi:10.1111/j.1749-6632.2010.05921.x.

    Article  Google Scholar 

  • Strassmann, W. P. (1959). Interrelated industries and the rate of technological-change. Review of Economic Studies, 27(72–7), 16–22. doi:10.2307/2296047.

    Article  Google Scholar 

  • Terrados, J., Almonacid, G., & Hontoria, L. (2007). Regional energy planning through SWOT analysis and strategic planning tools: Impacts on renewable development. Renewable and Sustainable Energy Reviews, 11(1), 1275–1287.

    Article  Google Scholar 

  • Thompson, P., & Taylor, T. G. (1995). The capital-energy substitutability debate: A new look. The Review of Economics and Statistics, 77(3), 565–569. doi:10.2307/2109916.

    Article  Google Scholar 

  • Timmer, C. P. (1971). Using a probabilistic frontier production function to measure technical efficiency. Journal of Political Economy, 79(4), 776–794. doi:10.1086/259787.

    Article  Google Scholar 

  • Tveterås, R. (2000). Flexible panel data models for risky production technologies with an application to Salomon aquaculture. Journal of Econometric Reviews, 19(3 SRC—GoogleScholar), 367–389.

    Google Scholar 

  • Tveterås, R., & Heshmati, A. (2002). Patterns of productivity growth in the norwegian salmon farming industry. International Review of Economics and Business, 2(3), 367–393.

    Google Scholar 

  • Urga, G., & Walters, C. (2003). Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand. Energy Economics, 25(1), 1–21. doi:10.1016/S0140-9883(02)00022-1.

    Article  Google Scholar 

  • Wang, C. X., & Webster, S. (2007). Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer. Decision Sciences, 38(3), 361–389. doi:10.1111/j.1540-5915.2007.00163.x.

    Article  Google Scholar 

  • Welsch, H., & Ochsen, C. (2005). The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade. Energy Economics, 27(1), 93–111. doi:10.1016/j.eneco.2004.11.004.

    Article  Google Scholar 

  • Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187. doi:10.1007/s10109-005-0155-6.

    Article  Google Scholar 

  • Wooldridge, J. M. (2006). Introductory Econometrics: A modern approach (4th ed.). Michigan State University.

    Google Scholar 

  • Zahan, M., & Kenett, R. S. (2013). Modeling and forecasting energy consumption in the manufacturing industry in South Asia. International Journal of Energy Economics and Policy, 2(1), 87–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabaz T. Khayyat .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Khayyat, N.T. (2015). Overview. In: Energy Demand in Industry. Green Energy and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9953-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9953-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9952-2

  • Online ISBN: 978-94-017-9953-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics