Skip to main content

Plasmonic Gas and Chemical Sensing

  • Conference paper
Nanomaterials and Nanoarchitectures

Abstract

Sensitive and robust detection of gases and chemical reactions constitutes a cornerstone of scientific research and industrial applications. In an effort to reach progressively smaller reagent concentrations and sensing volumes, optical sensor technology has experienced a paradigm shift from extended thin-film systems towards engineered nanoscale devices. In this size regime, plasmonic particles and nanostructures provide an ideal toolkit for the realization of novel sensing concepts. This is due to their unique ability to simultaneously focus light into subwavelength hotspots of the electromagnetic field and to transmit minute changes of the local environment back into the farfield as a modulation of their optical response. Since the basic building blocks of a plasmonic system are commonly noble metal nanoparticles or nanostructures, plasmonics can easily be integrated with a plethora of chemically or catalytically active materials and compounds to detect processes ranging from hydrogen absorption in palladium to the detection of trinitrotoluene (TNT). In this review, we will discuss a multitude of plasmonic sensing strategies, spanning the technological scale from simple plasmonic particles embedded in extended films to highly engineered complex plasmonic nanostructures. Due to their flexibility and excellent sensing performance, plasmonic structures may open an exciting pathway towards the detection of chemical and catalytic events down to the single molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  CAS  Google Scholar 

  2. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  3. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  4. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  5. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  6. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513

    Article  CAS  Google Scholar 

  7. Larsson EM, Syrenova S, Langhammer C (2012) Nanoplasmonic sensing for nanomaterials science. Nanophotonics 1:249–266

    Article  CAS  Google Scholar 

  8. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  9. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  10. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:1–33

    Article  Google Scholar 

  11. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to wave guiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  12. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  13. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887

    Article  CAS  Google Scholar 

  14. Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18:1949

    Article  CAS  Google Scholar 

  15. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  Google Scholar 

  16. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  17. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  18. Tassin P, Zhang L, Zhao R, Jain A, Koschny T, Soukoulis C (2012) Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys Rev Lett 109:187401

    Article  Google Scholar 

  19. Miroshnichenko A, Flach S, Kivshar Y (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

  20. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83–90

    Article  CAS  Google Scholar 

  21. Muhlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  22. Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4:5269–5276

    Article  CAS  Google Scholar 

  23. Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ (2013) Revealing the quantum regime in tunnelling plasmonics. Nature 491:574–577

    Article  Google Scholar 

  24. Scholl JA, García-Etxarri A, Koh AL, Dionne JA (2013) Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett 13:564–569

    Article  CAS  Google Scholar 

  25. Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094

    Article  CAS  Google Scholar 

  26. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107:209–232

    Article  CAS  Google Scholar 

  27. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors – a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188

    Article  CAS  Google Scholar 

  28. Ando M, Kobayashi T, Iijima S, Haruta M (2003) Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sens Actuators B 96:589–595

    Article  CAS  Google Scholar 

  29. Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA (2006) Development and characterization of Au−YSZ surface plasmon resonance based sensing materials: high temperature detection of CO. J Phys Chem B 110:13508–13511

    Article  CAS  Google Scholar 

  30. Buttner WJ, Post MB, Burgess R, Rivkin C (2011) An overview of hydrogen safety sensors and requirements. Int J Hydrog Energy 36:2462–2470

    Article  CAS  Google Scholar 

  31. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  32. Buso D, Busato G, Guglielmi M, Martucci A, Bello V, Mattei G, Mazzoldi P, Post ML (2007) Selective optical detection of H2 and CO with SiO2 sol – gel films containing NiO and Au nanoparticles. Nanotechnology 18:475505

    Article  Google Scholar 

  33. Dharmalingam G, Joy NA, Grisafe B, Carpenter MA (2012) Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control. Beilstein J Nanotechnol 3:712–721

    Article  Google Scholar 

  34. Rogers PH, Sirinakis G, Carpenter MA (2008) Direct observations of electrochemical reactions within Au-YSZ thin films via absorption shifts in the Au nanoparticle surface plasmon resonance. J Phys Chem C 112:6749–6757

    Article  CAS  Google Scholar 

  35. Ohodnicki PR, Wang C, Natesakhawat S, Baltrus JP, Brown TD (2012) In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures. J Appl Phys 111:064320

    Article  Google Scholar 

  36. Della Gaspera E, Guglielmi M, Agnoli S, Granozzi G, Post ML, Bello V, Mattei G, Martucci A (2010) Au nanoparticles in nanocrystalline TiO2− NiO films for SPR-based, selective H2S gas sensing. Chem Mater 22:3407–3417

    Article  CAS  Google Scholar 

  37. Rogers PH, Sirinakis G, Carpenter MA (2008) Plasmonic-based detection of NO2 in a harsh environment. J Phys Chem C 112:8784–8790

    Article  CAS  Google Scholar 

  38. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  39. Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari R, Feld M (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  40. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, De Wu Y, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  41. Qian K, Liu H, Yang L, Liu J (2012) Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 137:4644–4646

    Article  CAS  Google Scholar 

  42. Zhang BQ, Li SB, Xiao Q, Li J, Sun JJ (2013) Rapid synthesis and characterization of ultra‐thin shell Au@ SiO2 nanorods with tunable SPR for shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS). J Raman Spectrosc 44:1120–1125

    Article  CAS  Google Scholar 

  43. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  44. Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359

    Article  CAS  Google Scholar 

  45. Dahlin AB, Tegenfeldt JO, Höök F (2006) Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 78:4416–4423

    Article  CAS  Google Scholar 

  46. Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849

    Article  CAS  Google Scholar 

  47. Yang J, Yang J, Ying JY (2012) Morphology and lateral strain control of Pt nanoparticles via core – shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 6:9373–9382

    Article  CAS  Google Scholar 

  48. Christian ML, Aguey-Zinsou K-F (2012) Core-shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS Nano 6:7739–7751

    Article  CAS  Google Scholar 

  49. Hsieh Y-C, Zhang Y, Su D, Volkov V, Si R, Wu L, Zhu Y, An W, Liu P, He P, Ye S, Adzic RR, Wang JX (2013) Ordered bilayer ruthenium – platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat Commun 4:2466

    Google Scholar 

  50. Ghodselahi T, Zahrabi H, Saani MH, Vesaghi MA (2011) CO gas sensor properties of Cu@CuO core – shell nanoparticles based on localized surface plasmon resonance. J Phys Chem C 115:22126–22130

    Article  CAS  Google Scholar 

  51. Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 382:203–210

    Article  CAS  Google Scholar 

  52. Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in the human body. FEBS Lett 486:10–13

    Article  CAS  Google Scholar 

  53. Endo T, Shibata A, Yanagida Y, Higo Y, Hatsuzawa T (2010) Localized surface plasmon resonance optical characteristics for hydrogen peroxide using polyvinylpyrrolidone coated silver nanoparticles. Mater Lett 64:2105–2108

    Article  CAS  Google Scholar 

  54. Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, Chilkoti A (2012) Plasmon ruler with angstrom length resolution. ACS Nano 6:9237–9246

    Article  CAS  Google Scholar 

  55. Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072–1074

    Article  Google Scholar 

  56. Flanagan TB, Oates WA (1991) The palladium-hydrogen system. Annu Rev Mater Sci 21:269–304

    Article  CAS  Google Scholar 

  57. Jewell L, Davis B (2006) Review of absorption and adsorption in the hydrogen-palladium system. Appl Catal Gen 310:1–15

    Article  CAS  Google Scholar 

  58. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299

    Article  CAS  Google Scholar 

  59. Khanuja M, Mehta BR, Agar P, Kulriya PK, Avasthi DK (2009) Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: effect of hydrogen concentration, pressure, and temperature. J Appl Phys 106:093515

    Article  Google Scholar 

  60. Tang ML, Liu N, Dionne JA, Alivisatos AP (2011) Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J Am Chem Soc 133:13220–13223

    Article  CAS  Google Scholar 

  61. Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227

    Article  CAS  Google Scholar 

  62. Tittl A, Yin X, Giessen H, Tian X-D, Tian ZQ, Kremers C, Chigrin DN, Liu N (2013) Plasmonic smart dust for probing local chemical reactions. Nano Lett 13:1816–1821

    CAS  Google Scholar 

  63. Wang C, Ma L, Hossain M, Wang H, Zou S, Hickman JJ, Su M (2010) Direct visualization of molecular scale chemical adsorptions on solids using plasmonic nanoparticle arrays. Sens Actuators B 150:667–672

    Article  CAS  Google Scholar 

  64. Morris T, Szulczewski G (2002) A spectroscopic ellipsometry, surface plasmon resonance, and X-ray photoelectron spectroscopy study of Hg adsorption on gold surfaces. Langmuir 18:2260–2264

    Article  CAS  Google Scholar 

  65. Ahmadnia-Feyzabad S, Khodadadi AA, Vesali-Naseh M, Mortazavi Y (2012) Highly sensitive and selective sensors to volatile organic compounds using MWCNTs/SnO2. Sens Actuators B 166–167:150–155

    Article  Google Scholar 

  66. Silva LIB, Freitas AC, Rocha-Santos TAP, Pereira ME, Duarte AC (2011) Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics. Talanta 83:1586–1594

    Article  CAS  Google Scholar 

  67. Ma W, Luo J, Ling W, Wang W (2013) Chloroform-sensing properties of plasmonic nanostructures using poly(methyl methacrylate) transduction layer. Micro Nano Lett 8:111–114

    Article  CAS  Google Scholar 

  68. Langhammer C, Zorić I, Kasemo B, Clemens BM (2007) Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett 7:3122–3127

    Article  CAS  Google Scholar 

  69. Strohfeldt N, Tittl A, Giessen H (2013) Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications. Opt Mater Express 3:194–204

    Article  CAS  Google Scholar 

  70. Prodan E (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  71. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5:2042–2050

    Article  CAS  Google Scholar 

  72. Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M, Liew TYF, Hong M, Maier SA (2012) Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12:2101–2106

    Article  CAS  Google Scholar 

  73. Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90:3825

    Article  CAS  Google Scholar 

  74. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 66:045102

    Article  Google Scholar 

  75. Fan S, Joannopoulos J (2002) Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65:235112

    Article  Google Scholar 

  76. Christ A, Tikhodeev S, Gippius N, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901

    Article  CAS  Google Scholar 

  77. Nau D, SEidel A, Orzekowsky RB, Lee SH, Deb S, Giessen H (2010) Hydrogen sensor based on metallic photonic crystal slabs. Opt Lett 35:3150–3152

    Article  CAS  Google Scholar 

  78. Valsecchi C, Brolo AG (2013) Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 29:5638–5649

    Article  CAS  Google Scholar 

  79. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  CAS  Google Scholar 

  80. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  81. Maeda E, Mikuriya S, Endo K, Yamada I, Suda A, Delaunay J-J (2009) Optical hydrogen detection with periodic subwavelength palladium hole arrays. Appl Phys Lett 95:133504

    Article  Google Scholar 

  82. Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR (2013) Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492:86–89

    Article  Google Scholar 

  83. Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006

    Article  CAS  Google Scholar 

  84. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  85. Landy N, Sajuyigbe S, Mock J, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  86. Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11:4366–4369

    Article  CAS  Google Scholar 

  87. Fedtke P, Wienecke M, Bunescu M-C, Pietrzak M, Deistung K, Borchardt E (2004) Hydrogen sensor based on optical and electrical switching. Sens Actuators B 100:151–157

    Article  CAS  Google Scholar 

  88. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657

    Article  CAS  Google Scholar 

  89. Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW (2012) Nanoplasmonics: classical down to the nanometer scale. Nano Lett 12:1683–1689

    Article  CAS  Google Scholar 

  90. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  91. Zhao Y, Engheta N, Alù A (2011) Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. J Opt Soc Am B 28:1266

    Article  CAS  Google Scholar 

  92. Liu N, Wen F, Zhao Y, Wang Y, Nordlander P, Halas NJ, Alù A (2012) Individual nanoantennas loaded by three-dimensional optical nanocircuits. Nano Lett 13(1):142–147

    Article  Google Scholar 

  93. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636

    Article  CAS  Google Scholar 

  94. Tittl A, Kremers C, Dorfmüller J, Chigrin DN, Giessen H (2012) Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Opt Mater Express 2:111–118

    Article  CAS  Google Scholar 

  95. Wadell C, Antosiewicz TJ, Langhammer C (2012) Optical absorption engineering in stacked plasmonic Au-SiO(2)-Pd nanoantennas. Nano Lett 12:4784–4790

    Article  CAS  Google Scholar 

  96. Dasgupta A, Kumar GVP (2012) Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity. Appl Opt 51:1688–1693

    Article  CAS  Google Scholar 

  97. Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Strohfeldt and F. Neubrech for key advice and discussions. A.T. and H.G. were financially supported by the Deutsche Forschungsgemeinschaft (SPP1391, FOR730, GI 269/11-1), the Bundesministerium für Bildung und Forschung (13 N9048 and 13 N10146), the ERC Advanced Grant COMPLEXPLAS, the Baden-Württemberg Stiftung (Spitzenforschung II), and the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (Az: 7533-7-11.6-8). N.L. was supported by the Sofia Kovalevskaja Award of the Alexander von Humboldt Foundation and Grassroots Proposal M10331 from the Max Planck Institute for Intelligent Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tittl, A., Giessen, H., Liu, N. (2015). Plasmonic Gas and Chemical Sensing. In: Bardosova, M., Wagner, T. (eds) Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9921-8_8

Download citation

Publish with us

Policies and ethics