Skip to main content

Halloysite Clay Nanotube Composites with Sustained Release of Chemicals

  • Conference paper
Nanomaterials and Nanoarchitectures

Abstract

Halloysite is a naturally occurring nanometer scale tube that is capable of both enhancing the physical properties of a material and functionalizing the material. The addition of halloysite into polymeric materials increases the composite physical strength because of the shape and stability of these 50-nm diameter and ca. 1,500 nm length tubes. Whereas the unique chemical and physical characteristics of halloysite allow for loading drugs, biomacromolecules, anti-corrosion agents, flame-retardant agents, and metal nanoparticles followed by their controlled release. Therefore, by loading a chemical of interest inside of the tubes and then mixing the modified halloysite with various materials one will not only be able to make stronger materials but make them smarter and provide sustained functionality that would otherwise not be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals – a reviewer. Clay Miner 40:383–426

    Article  CAS  Google Scholar 

  2. Lvov Y, Abdullayev E (2013) Functional polymer – clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719

    Article  CAS  Google Scholar 

  3. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–595

    CAS  Google Scholar 

  4. Lvov Y, Shchukin D, Möhwald H, Price R (2008) Clay nanotubes for controlled release of protective agents – perspectives. ACS Nano 2:814–820

    Article  CAS  Google Scholar 

  5. Price R, Gaber B, Lvov Y (2001) In-vitro release characteristics of tetracycline, khellin and nicotinamide adenine dinucleotide from halloysite; a cylindrical mineral for delivery of biologically active agents. J Microencapsul 18:713–723

    Article  CAS  Google Scholar 

  6. Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotubes encapsulation for functional biocomposites. Adv Colloid Interface Sci 207:189–198. doi:10.1016/j.cis.2013.10.006

    Article  CAS  Google Scholar 

  7. Abdullayev E, Lvov Y (2011) Clay nanotubes for controlled release of protective agents – a review. J Nanosci Nanotech 11:10007–10026

    Article  CAS  Google Scholar 

  8. Yelleswarapu C, Gu G, Abdullayev E, Lvov Y, Rao D (2010) Nonlinear optics of nontoxic nanomaterials. Opt Commun 283:438–441

    Article  CAS  Google Scholar 

  9. Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. Appl Mater Interfaces 2:1437–1442

    Article  Google Scholar 

  10. Kirkman JH (1981) Morphology and structure of halloysite in New Zealand tephras. Clays Clay Miner 29:1–9

    Article  Google Scholar 

  11. Lu D, Chen H, Wu J, Chan C (2011) Direct measurements of the Young’s modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage. J Nanosci Nanotechnol 11:7789–7793

    Article  CAS  Google Scholar 

  12. Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44:191–196

    Article  CAS  Google Scholar 

  13. Singh B, Mackinnon I (1996) Experimental transformation of kaolinite to halloysite. Clays Clay Miner 44:825–834

    Article  CAS  Google Scholar 

  14. Abdullayev E, Shchukin D, Lvov Y (2008) Halloysite clay nanotubes as a reservoir for corrosion inhibitors and template for layer-by-layer encapsulation. Polym Mater Sci Eng 99:331–342

    CAS  Google Scholar 

  15. Churchman GJ, Carr RM (1975) The definition and nomenclature of halloysites. Clays Clay Miner 23:382–388

    Article  CAS  Google Scholar 

  16. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  17. Vergaro V, Abdullayev E, Cingolani R, Lvov Y, Leporatti S (2010) Halloysite clay nanotubes: characterization and biocompatibility study. Biomacromolecules 11:820–828

    Article  CAS  Google Scholar 

  18. Tazaki K (2005) Microbial formation of a halloysite-like mineral. Clays Clay Miner 53:224–233

    Article  CAS  Google Scholar 

  19. Carr RM, Chaikum N, Patterson N (1978) Intercalation of salts in halloysite. Clays Clay Miner 26:144–152

    Article  CAS  Google Scholar 

  20. Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18:455703

    Article  Google Scholar 

  21. Suh Y, Kil D, Chung K, Abdullayev E, Lvov Y, Mongayt D (2011) Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent. J Nanosci Nanotechol 11:661–665

    Article  CAS  Google Scholar 

  22. Veerabadran N, Price R, Lvov Y (2007) Clay nanotubes for encapsulation and sustained release of drugs. NANO 2:215–222

    Article  Google Scholar 

  23. Lai X, Agarwal M, Lvov Y, Pachpande C, Varahramyan K, Witzmann F (2013) Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316–1329

    CAS  Google Scholar 

  24. Lvov Y, Price R (2008) Halloysite nanotubules a novel substrate for the controlled delivery of bioactive molecules. In: Ruiz-Hitzky E, Ariga K, Lvov Y (eds) Bio-inorganic hybrid nanomaterials. Wiley, London/Berlin, pp 440–478

    Google Scholar 

  25. Lvov Y, Price R, Gaber B, Ichinose I (2002) Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations. Coll Surf Eng 198–200:375–382

    Article  Google Scholar 

  26. Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite films. Appl Phys A: Mater Sci Process 88:391–395

    Article  CAS  Google Scholar 

  27. Wei W, Abdullayev E, Hollister A, Mills D, Lvov Y (2012) Clay nanotube/poly(methyl methacrylate) bone cement composite with sustained antibiotic release. Macromol Mater Eng 297:645–653

    Article  CAS  Google Scholar 

  28. Zhao M, Liu P (2008) Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater 112:419–424

    Article  CAS  Google Scholar 

  29. Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497

    Article  CAS  Google Scholar 

  30. Yah W-O, Takahara A, Lvov Y (2012) Selective modification of halloysite lumen with octadecyl phosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859

    Article  CAS  Google Scholar 

  31. Shchukin D, Price R, Lvov Y (2005) Biomimetic synthesis of Vaterite in the interior of clay nanotubules. Small 1:510–513

    Article  CAS  Google Scholar 

  32. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Coll Interface 406:121–129

    Article  CAS  Google Scholar 

  33. Veerabadran N, Price R, Lvov Y (2008) Tubule clay nanoreactor for template synthesis of silver nanoparticles. Polym Mater Sci Eng 99:566–577

    CAS  Google Scholar 

  34. Abdullayev E, Sakakibara K, Okamoto K, Wei W, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Interfaces 3:4040–4048

    Article  CAS  Google Scholar 

  35. Abdullayev E, Joshi A, Wei W, Lvov Y (2012) Selective lumen etching for clay nanotubes: enhanced loading capacity. ACS Nano 6:7216–7226

    Article  CAS  Google Scholar 

  36. Yah W-O, Xu H, Soejima H, Ma W, Takahara T, Lvov Y (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134:12134–12137

    Article  CAS  Google Scholar 

  37. Wei W, Minullina R, Fakhrullin R, Abdullayev E, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RCS Adv 4:488–495

    CAS  Google Scholar 

  38. Cavallaro G, Lazzara G, Milioto S (2011) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Ext Phys-Chem Stud Langmuir 27:1158–1163

    CAS  Google Scholar 

  39. Kommireddy D, Sriram S, Lvov Y, Mills D (2006) Layer-by-layer assembled nanoparticle thin films – a new surface modification approach for stem cell attachment. Biomaterials 27:4296–4303

    Article  CAS  Google Scholar 

  40. Du M, Guo B, Liu M, Jia D (2007) Thermal decomposition and oxidation ageing behaviour of polypropylene/halloysite nanotube nanocomposites. Polym Polym Compos 15:321–328

    CAS  Google Scholar 

  41. Lecouvet B, Gutierrez J, Sclavons M, Bailly C (2011) Structure property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96:226–235

    Article  CAS  Google Scholar 

  42. Voon H, Bhat R, Easa A, Liong M, Karim A (2012) Effect of addition of halloysite nanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food Bioprocess Technol 5:1766–1774

    Article  CAS  Google Scholar 

  43. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336

    Article  CAS  Google Scholar 

  44. Hua F, Cui T, Lvov Y (2004) Ultrathin cantilevers based on polymer-ceramic nanocomposite assembled through layer-by-layer adsorption. Nano Lett 4:823–825

    Article  CAS  Google Scholar 

  45. Cavallaro G, Donato D, Lazzara G, Milioto S (2011) Films of halloysite nanotubes sandwiched between two layers of biopolymer: from the morphology to the dielectric, thermal, transparency, and wettability properties. J Phys Chem C 115:20491–20498

    Article  CAS  Google Scholar 

  46. Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci A: Pure Appl Chem 47:33–38

    Article  CAS  Google Scholar 

  47. Shchukin D, Moehwald H (2007) Self-repairing coating containing active nanoreservoirs. Small 3:926–943

    Article  CAS  Google Scholar 

  48. Veerabadran N, Lvov Y, Price R (2009) Organized shells on clay nanotubes for controlled release of macromolecules. Macromol Rapid Commun 24:99–103

    Article  Google Scholar 

  49. Levis S, Deasy P (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. Int J Pharm 253:145–157

    Article  CAS  Google Scholar 

  50. Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167–183

    Article  CAS  Google Scholar 

  51. Levis S, Deasy P (2002) Characterization of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134

    Article  CAS  Google Scholar 

  52. Abdullayev E, Lvov Y (2013) Polymeric composites with ceramic nanotube endoskeleton loaded with functional chemical agents. J Mater Chem B 1:2894–2903

    Article  CAS  Google Scholar 

  53. Shamsi M, Geckeler K (2008) The first biopolymer-wrapped non carbon nanotubes. Nanotechnology 19:075604

    Article  Google Scholar 

  54. Ward C, Song S, Davis E (2010) Controlled release of tetracycline–HCl from halloysite–polymer composite films. J Nanosci Nanotechnol 10:6641–6649

    Article  Google Scholar 

  55. Forsgren J, Jämstorp E, Bredenberg S, Engqvist H, Strømme M (2010) A ceramic drug delivery vehicle for oral administration of highly potent opioids. J Pharm Sci 99:219–226

    Article  CAS  Google Scholar 

  56. Zhou W, Guo B, Liu M, Liao R, Bakr A, Rabie M, Jia D (2009) Poly(vinyl alcohol)/halloysite nanotubes bio nanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res A 93:1574–1581

    Google Scholar 

  57. Abdullayev E, Lvov Y (2010) Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J Mater Chem 20:6681–6687

    Article  CAS  Google Scholar 

  58. Zhai R, Zhang B, Liu L, Xie Y, Zhang H, Liu J (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal Commun 12:259–263

    Article  CAS  Google Scholar 

  59. Datta S, Christena LR, Rajaram YRS (2012) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9

    Article  Google Scholar 

  60. Chao C, Zhang B, Zhai R, Xiang X, Liu J, Chen R (2013) Natural nanotube-based biomimetic porous microspheres for significantly enhanced biomolecule immobilization. ACS Sustain Chem Eng 1:1145

    Google Scholar 

  61. Konnova S, Sharipova I, Ilinskaya O, Lvov Y, Fakhrullin R (2013) Cell-mediated three-dimensional assembly of halloysite nanotubes. Chem Commun 49:4208–4210

    Google Scholar 

  62. Fakhrullin R, Lvov Y (2012) “Face-lifting and make-up” for microorganisms (layer-by-layer polyelectrolyte nanocoating). ACS Nano 6:4557–4564

    Article  CAS  Google Scholar 

  63. Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interf 1:1437–1443

    Google Scholar 

  64. Joshi A, Abdullayev E, Vasiliev A, Volkova O, Lvov Y (2013) Interfacial modification of clay nanotubes for the sustained release of corrosion. Langmuir 29:7439–7445

    Google Scholar 

  65. Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (2013) Interfacial Modification of Clay Nanotubes for the Sustained Release of Corrosion Inhibitors. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(Database issue):D764–D772

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. This work was partially funded by Russian Scientific Fund grant no. 14-14-00924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Lvov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tully, J., Fakhrullin, R., Lvov, Y. (2015). Halloysite Clay Nanotube Composites with Sustained Release of Chemicals. In: Bardosova, M., Wagner, T. (eds) Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9921-8_5

Download citation

Publish with us

Policies and ethics