Skip to main content

Fundamentals and Applications of Organised Molecular Films

  • Conference paper
Nanomaterials and Nanoarchitectures

Abstract

In this Chapter we describe the experimental procedures and main features of solid organised films produced with three techniques: Langmuir-Blodgett (LB), electrostatic layer-by-layer (LbL) and self-assembled monolayers (SAMs). Emphasis is placed on possible applications in which molecular control of the film architectures is exploited. In particular, the use of organised films in sensing units for electronic tongues (e-tongues) and biosensors is highlighted not only in terms of the nanotech-based methods but also in connection with computational methods. The latter are employed in sensing and biosensing data analysis, and becoming increasingly important for generating fully-fledged clinical diagnosis systems. With regard to basic science involved in organised films, we discuss the use of Langmuir monolayers in cell membrane models, which is important for drug design and drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319. doi:10.1126/science.1962191

    Article  CAS  Google Scholar 

  2. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237. doi:10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  3. Hoeppener S, Maoz R, Cohen S, Chi L, Fuchs H, Sagiv J (2002) Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates: a bottom-up chemical approach. Adv Mater 14:1036–1041. doi:10.1002/1521-4095(20020805)14:15<1036::AID-ADMA1036>3.0.CO;2-J

  4. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835. doi:10.1016/0040-6090(92)90417-A

    Article  Google Scholar 

  5. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022

    Article  CAS  Google Scholar 

  6. Langmuir I (1920) The mechanism of the surface phenomena of flotation. Trans Faraday Soc 15:62. doi:10.1039/tf9201500062

    Article  CAS  Google Scholar 

  7. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II Liquids. 1. J Am Chem Soc 39:1848–1906. doi:10.1021/ja02254a006

    Article  CAS  Google Scholar 

  8. Blodgett KB (1934) Monomolecular films of fatty acids on glass. J Am Chem Soc 56:495. doi:10.1021/ja01317a513

    Article  CAS  Google Scholar 

  9. Petty MC (1996) Langmuir-Blodgett films. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  10. Roberts G (1990) Langmuir-Blodgett films. Plenum Press, New York

    Book  Google Scholar 

  11. Tredgold RH (1994) Order in thin organic films. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  12. Ulman A (1991) An Introduction to organic ultrathin films from Langmuir-Blodgett to self-assembly. Academic, Boston

    Google Scholar 

  13. Oliveira Jr ON, He J-A, Zucolotto V, Balasubramanian S, Li L, Nalwa HS, Kumar J, Tripathy SK (2002) Layer-by-layer polyelectrolyte-based thin films for electronic and photonic applications. In: Kumar J, Tripathy SK, Nalwa HS (eds) Handbook of polyelectrolytes and their applications. American Scientific Publishers, Los Angeles, pp 1–33

    Google Scholar 

  14. Park JY, Advincula RC (2011) Nanostructuring polymers, colloids, and nanomaterials at the air–water interface through Langmuir and Langmuir–Blodgett techniques. Soft Matter 7:9829. doi:10.1039/c1sm05750b

    Article  CAS  Google Scholar 

  15. Miyashita T (1993) Recent studies on functional ultrathin polymer films prepared by the Langmuir-Blodgett technique. Prog Polym Sci 18:263–294

    Article  CAS  Google Scholar 

  16. Tredgold RH, Winter CS (1982) Langmuir–Blodgett monolayers of preformed polymers. J Phys D Appl Phys 15:L55–L58. doi:10.1088/0022-3727/15/6/003

    Article  CAS  Google Scholar 

  17. Moon GD, Lee T II, Kim B, Chae G, Kim J, Kim S, Myoung J-M, Jeong U (2011) Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 5:8600–8612. doi:10.1021/nn202733f

    Article  CAS  Google Scholar 

  18. Mitzi DB (2001) Thin-film deposition of organic − inorganic hybrid materials. Chem Mater 13:3283–3298. doi:10.1021/cm0101677

    Article  CAS  Google Scholar 

  19. Girard-Egrot AP, Godoy S, Blum LJ (2005) Enzyme association with lipidic Langmuir-Blodgett films: interests and applications in nanobioscience. Adv Colloid Interface Sci 116:205–225. doi:10.1016/j.cis.2005.04.006

    Article  CAS  Google Scholar 

  20. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. doi:10.1016/j.biotechadv.2011.09.003

    Article  CAS  Google Scholar 

  21. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira Jr ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263. doi:10.1016/j.bios.2009.09.043

    Article  CAS  Google Scholar 

  22. Brezesinski G, Möhwald H (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interface Sci 100–102:563–584. doi:10.1016/S0001-8686(02)00071-4

    Article  CAS  Google Scholar 

  23. Netzer L, Sagiv J (1983) A new approach to construction of artificial monolayer assemblies. J Am Chem Soc 105:674–676. doi:10.1021/ja00341a087

    Article  CAS  Google Scholar 

  24. Evans SD, Urankar E, Ulman A, Ferris N (1991) Self-assembled monolayers of alkanethiols containing a polar aromatic group: effects of the dipole position on molecular packing, orientation, and surface wetting properties. J Am Chem Soc 113:4121–4131. doi:10.1021/ja00011a010

    Article  CAS  Google Scholar 

  25. Maoz R, Sagiv J (1987) Penetration-controlled reactions in organized monolayer assemblies. 2. Aqueous permanganate interaction with self-assembling monolayers of long-chain surfactants. Langmuir 3:1045–1051. doi:10.1021/la00078a028

    Article  CAS  Google Scholar 

  26. Richer J, Stolberg L, Lipkowski J (1986) Quantitative investigations of adsorption of tert-amyl alcohol at the gold(110)-aqueous solution interface. Langmuir 2:630–638. doi:10.1021/la00071a019

    Article  CAS  Google Scholar 

  27. Tillman N, Ulman A, Penner TL (1989) Formation of multilayers by self-assembly. Langmuir 5:101–111. doi:10.1021/la00085a019

    Article  CAS  Google Scholar 

  28. Zhao X-M, Wilbur JL, Whitesides GM (1996) Using two-stage chemical amplification to determine the density of defects in self-assembled monolayers of alkanethiolates on gold. Langmuir 12:3257–3264. doi:10.1021/la960044e

    Article  CAS  Google Scholar 

  29. Arya SK, Solanki PR, Datta M, Malhotra BD (2009) Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosens Bioelectron 24:2810–7. doi:10.1016/j.bios.2009.02.008

    Article  CAS  Google Scholar 

  30. Gooding JJ, Darwish N (2012) The rise of self-assembled monolayers for fabricating electrochemical biosensors–an interfacial perspective. Chem Rec 12:92–105. doi:10.1002/tcr.201100013

    Article  CAS  Google Scholar 

  31. Booth MA, Vogel R, Curran JM, Harbison S, Travas-Sejdic J (2013) Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing. Biosens Bioelectron 45:136–40. doi:10.1016/j.bios.2013.01.044

    Article  CAS  Google Scholar 

  32. Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21:569–594. doi:10.1016/0095-8522(66)90018-3

    Article  CAS  Google Scholar 

  33. Lvov Y, Haas H, Decher G, Moehwald H, Kalachev A (1993) Assembly of polyelectrolyte molecular films onto plasma-treated glass. J Phys Chem 97:12835–12841. doi:10.1021/j100151a033

    Article  CAS  Google Scholar 

  34. Lvov Y, Decher G, Moehwald H (1993) Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–486. doi:10.1021/la00026a020

    Article  CAS  Google Scholar 

  35. Cassagneau T, Fendler JH (1999) Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets. J Phys Chem B 103:1789–1793. doi:10.1021/jp984690t

    Article  CAS  Google Scholar 

  36. Fendler JH (1996) Self-assembled nanostructured materials. Chem Mater 8:1616–1624. doi:10.1021/cm960116n

    Article  CAS  Google Scholar 

  37. He J-A, Valluzzi R, Yang K, Dolukhanyan T, Sung C, Kumar J, Tripathy SK, Samuelson L, Balogh L, Tomalia DA (1999) Electrostatic multilayer deposition of a gold − dendrimer nanocomposite. Chem Mater 11:3268–3274. doi:10.1021/cm990311c

    Article  CAS  Google Scholar 

  38. Balasubramanian S, Wang X, Wang HC, Yang K, Kumar J, Tripathy SK, Li L (1998) Azo chromophore-functionalized polyelectrolytes. 2. Acentric self-assembly through a layer-by-layer deposition process. Chem Mater 10:1554–1560. doi:10.1021/cm9707418

    Article  CAS  Google Scholar 

  39. Tripathy SK, Katagi H, Kasai H, Balasubramanian S, Oshikiri H, Kumar J, Oikawa H, Okada S, Nakanishi H (1998) Self assembly of organic microcrystals 1: electrostatic attachment of polydiacetylene microcrystals on a polyelectrolyte surface. Jpn J Appl Phys 37:L343–L345. doi:10.1143/JJAP.37.L343

    Article  CAS  Google Scholar 

  40. Fou AC, Onitsuka O, Ferreira M, Rubner MF, Hsieh BR (1996) Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). J Appl Phys 79:7501. doi:10.1063/1.362421

    Article  CAS  Google Scholar 

  41. Wu A, Yoo D, Lee J-K, Rubner MF (1999) Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex: 3. High efficiency devices via a layer-by-layer molecular-level blending approach. J Am Chem Soc 121:4883–4891. doi:10.1021/ja9833624

    Article  CAS  Google Scholar 

  42. Linford MR, Auch M, Möhwald H (1998) Nonmonotonic effect of ionic strength on surface dye extraction during dye − polyelectrolyte multilayer formation. J Am Chem Soc 120:178–182. doi:10.1021/ja972133z

    Article  CAS  Google Scholar 

  43. Tedeschi C, Caruso F, Möhwald H, Kirstein S (2000) Adsorption and desorption behavior of an anionic pyrene chromophore in sequentially deposited polyelectrolyte-dye thin films. J Am Chem Soc 122:5841–5848. doi:10.1021/ja994029i

    Article  CAS  Google Scholar 

  44. Caruso F, Möhwald H (1999) Protein multilayer formation on colloids through a stepwise self-assembly technique. J Am Chem Soc 121:6039–6046. doi:10.1021/ja990441m

    Article  CAS  Google Scholar 

  45. He J-A, Samuelson L, Li L, Kumar J, Tripathy SK (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. Langmuir 14:1674–1679. doi:10.1021/la971336y

    Article  CAS  Google Scholar 

  46. Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117:6117–6123. doi:10.1021/ja00127a026

    Article  CAS  Google Scholar 

  47. Lvov Y, Ariga K, Kunitake T (1994) Layer-by-layer assembly of alternate protein/polyion ultrathin films. Chem Lett 23:2323–2326. doi:10.1246/cl.1994.2323

    Article  Google Scholar 

  48. Oliveira Jr ON, Raposo M, Dhanabalan A (2011) Polymeric, Langmuir-Blodgett and self-assembled films. In: Nalwa HS (ed) Handbook of surfaces and interfaces of materials. Academic, San Diego, pp 1–63

    Google Scholar 

  49. Pavinatto FJ, Caseli L, Oliveira Jr ON (2010) Chitosan in nanostructured thin films. Biomacromolecules 11:1897–908. doi:10.1021/bm1004838

    Article  CAS  Google Scholar 

  50. Izquierdo A, Ono SS, Voegel J-C, Schaaf P, Decher G (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21:7558–67. doi:10.1021/la047407s

    Article  CAS  Google Scholar 

  51. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419. doi:10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9

    Article  CAS  Google Scholar 

  52. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly †. Chem Mater 20:848–858. doi:10.1021/cm7024813

    Article  CAS  Google Scholar 

  53. Estephan ZG, Qian Z, Lee D, Crocker JC, Park S-J (2013) Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach. Nano Lett 13:4449–55. doi:10.1021/nl4023308

    Article  CAS  Google Scholar 

  54. Raoufi M, Schönherr H (2014) Fabrication of complex free-standing nanostructures with concave and convex curvature via the layer-by-layer approach. Langmuir 30:1723–8. doi:10.1021/la500007x

    Article  CAS  Google Scholar 

  55. Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–67. doi:10.1002/adma.200901327

    Article  CAS  Google Scholar 

  56. Granicka LH (2014) Nanoencapsulation of cells within multilayer shells for biomedical applications. J Nanosci Nanotechnol 14:705–716. doi:10.1166/jnn.2014.9106

    Article  CAS  Google Scholar 

  57. Skorb EV, Andreeva DV (2013) Layer-by-layer approaches for formation of smart self-healing materials. Polym Chem 4:4834. doi:10.1039/c3py00088e

    Article  CAS  Google Scholar 

  58. Kerdjoudj H, Berthelemy N, Boulmedais F, Stoltz J-FJ-F, Menu P, Voegel JC (2010) Multilayered polyelectrolyte films: a tool for arteries and vessel repair. Soft Matter 6:3722. doi:10.1039/b920729e

    Article  CAS  Google Scholar 

  59. De Temmerman M-L, Demeester J, De Smedt SC, Rejman J (2012) Tailoring layer-by-layer capsules for biomedical applications. Nanomedicine (Lond) 7:771–788. doi:10.2217/nnm.12.48

    Article  CAS  Google Scholar 

  60. Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158:2–14. doi:10.1016/j.jconrel.2011.08.035

    Article  CAS  Google Scholar 

  61. Yeagle PL (1993) The membranes of cells. Academic, San Diego

    Google Scholar 

  62. Krägel J, Derkatch SR (2010) Interfacial shear rheology. Curr Opin Colloid Interface Sci 15:246–255. doi:10.1016/j.cocis.2010.02.001

    Article  CAS  Google Scholar 

  63. Hansen FK, Rødsrud G (1991) Surface tension by pendant drop. J Colloid Interface Sci 141:1–9. doi:10.1016/0021-9797(91)90296-K

    Article  CAS  Google Scholar 

  64. Langevin D (2014) Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu Rev Fluid Mech 46:47–65. doi:10.1146/annurev-fluid-010313-141403

    Article  Google Scholar 

  65. Dynarowicz-Latka P, Dhanabalan A, Oliveira Jr ON (2001) Modern physicochemical research on Langmuir monolayers. Adv Colloid Interface Sci 91:221–293

    Article  CAS  Google Scholar 

  66. Sadewasser S, Glatzel T (2012) Kelvin probe force microscopy. Springer Ser Surf Sci. doi:10.1007/978-3-642-22566-6

    Article  Google Scholar 

  67. Dhanabalan A, Mello SV, Oliveira Jr ON (1998) Preparation of Langmuir − Blodgett films of soluble polypyrrole. Macromolecules 31:1827–1832. doi:10.1021/ma970606g

    Article  CAS  Google Scholar 

  68. Helmholtz H (1902) Abhandlungen zur thermodynamik. 51

    Google Scholar 

  69. Demchak RJ, Fort T (1974) Surface dipole moments of close-packed un-ionized monolayers at the air-water interface. J Colloid Interface Sci 46:191–202. doi:10.1016/0021-9797(74)90002-2

    Article  CAS  Google Scholar 

  70. Oliveira Jr ON, Taylor DM, Lewis TJ, Salvagno S, Stirling CJM (1989) Estimation of group dipole moments from surface potential measurements on Langmuir monolayers. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85:1009. doi:10.1039/f19898501009

  71. Oliveira Jr ON, Taylor DM, Morgan H (1992) Modelling the surface potential-area dependence of a stearic acid monolayer. Thin Solid Films 210–211:76–78. doi:10.1016/0040-6090(92)90172-8

    Article  Google Scholar 

  72. Adamson AW (1967) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  73. Taylor DM, Oliveira Jr ON, Morgan H (1989) The surface potential of monolayers formed on weak acidic electrolytes: implications for lateral conduction. Chem Phys Lett 161:147–150. doi:10.1016/0009-2614(89)85047-X

    Article  Google Scholar 

  74. Brown JQ, McShane MJ (2005) Core-referenced ratiometric fluorescent potassium ion sensors using self-assembled ultrathin films on europium nanoparticles. IEEE Sens J 5:1197–1205. doi:10.1109/JSEN.2005.859252

    Article  CAS  Google Scholar 

  75. Shi W, Lin Y, Kong X, Zhang S, Jia Y, Wei M, Evans DG, Duan X (2011) Fabrication of pyrenetetrasulfonate/layered double hydroxide ultrathin films and their application in fluorescence chemosensors. J Mater Chem 21:6088. doi:10.1039/c1jm00073j

    Article  CAS  Google Scholar 

  76. Stubbe BG, Gevaert K, Derveaux S, Braeckmans K, De Geest BG, Goethals M, Vandekerckhove J, Demeester J, De Smedt SC (2008) Evaluation of encoded layer-by-layer coated microparticles as protease sensors. Adv Funct Mater 18:1624–1631. doi:10.1002/adfm.200701356

    Article  CAS  Google Scholar 

  77. Hénon S, Meunier J (1991) Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Rev Sci Instrum 62:936. doi:10.1063/1.1142032

    Article  Google Scholar 

  78. Honig D, Mobius D (1991) Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J Phys Chem 95:4590–4592. doi:10.1021/j100165a003

    Article  Google Scholar 

  79. Weidemann G, Brezesinski G, Vollhardt D, Möhwald H (1998) Disorder in Langmuir monolayers. 1. Disordered packing of alkyl chains. Langmuir 14:6485–6492. doi:10.1021/la980188o

    Article  CAS  Google Scholar 

  80. Popovitz-Biro R, Edgar R, Weissbuch I, Lavie R, Cohen S, Kjaer K, Als-Nielsen J, Wassermann E, Leiserowitz L, Lahav M (1998) Structural studies on Langmuir films of C50H102, nylon-6,6 polymer and its oligomeric analogue. Acta Polym 49:626–635. doi:10.1002/(SICI)1521-4044(199810)49:10/11<626::AID-APOL626>3.0.CO;2-8

    Article  CAS  Google Scholar 

  81. Zhou X-L, Chen S-H (1995) Theoretical foundation of X-ray and neutron reflectometry. Phys Rep 257:223–348. doi:10.1016/0370-1573(94)00110-O

    Article  CAS  Google Scholar 

  82. Kago K, Fürst M, Matsuoka H, Yamaoka H, Seki T (1999) Direct observation of photoisomerization of a polymer monolayer on a water surface by X-ray reflectometry. Langmuir 15:2237–2240. doi:10.1021/la981084g

    Article  CAS  Google Scholar 

  83. Li ZX, Bain CD, Thomas RK, Duffy DC, Penfold J (1998) Monolayers of hexadecyltrimethylammonium p -tosylate at the air − water interface. 2. Neutron reflection. J Phys Chem B 102:9473–9480. doi:10.1021/jp9821432

    Article  CAS  Google Scholar 

  84. Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, Turlet JM (1993) Polarization-modulated FT-IR spectroscopy of a spread monolayer at the air/water interface. Appl Spectrosc 47:869–874

    Article  CAS  Google Scholar 

  85. Shultz MJ, Baldelli S, Schnitzer C, Simonelli D (2002) Aqueous solution/air interfaces probed with sum frequency generation spectroscopy. J Phys Chem B 106:5313–5324. doi:10.1021/jp014466v

    Article  CAS  Google Scholar 

  86. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310. doi:10.1063/1.1726462

    Article  CAS  Google Scholar 

  87. Golden W (1981) A method for measuring infrared reflection? Absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations. J Catal 71:395–404. doi:10.1016/0021-9517(81)90243-8

    Article  CAS  Google Scholar 

  88. Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40:103–145. doi:10.1081/ASR-200038326

    Article  CAS  Google Scholar 

  89. Williams CT, Beattie DA (2002) Probing buried interfaces with non-linear optical spectroscopy. Surf Sci 500:545–576. doi:10.1016/S0039-6028(01)01536-9

    Article  CAS  Google Scholar 

  90. Volpati D, Aoki PHB, Alessio P, Pavinatto FJ, Miranda PB, Constantino CJL, Oliveira Jr ON (2014) Vibrational spectroscopy for probing molecular-level interactions in organic films mimicking biointerfaces. Adv Colloid Interface Sci 207C:199–215. doi:10.1016/j.cis.2014.01.014

    Article  CAS  Google Scholar 

  91. Miranda PB, Du Q, Shen YR (1998) Interaction of water with a fatty acid Langmuir film. Chem Phys Lett 286:1–8. doi:10.1016/S0009-2614(97)01476-0

    Article  CAS  Google Scholar 

  92. Nicholson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466. doi:10.1016/j.bbamem.2013.10.019

    Article  CAS  Google Scholar 

  93. Jones MN, Chapman D (1994) Micelles, monolayers and biomembranes. Wiley-Liss, New York

    Google Scholar 

  94. Berkowitz ML, Vácha R (2012) Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 45:74–82. doi:10.1021/ar200079x

    Article  CAS  Google Scholar 

  95. Blume A, Kerth A (2013) Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochim Biophys Acta 1828:2294–305. doi:10.1016/j.bbamem.2013.04.014

    Article  CAS  Google Scholar 

  96. Chattoraj DK, Birdi KS (1984) Adsorption and the Gibbs surface excess. Springer, New York, pp 219–223

    Book  Google Scholar 

  97. Galvez Ruiz MJ, Cabrerizo Vilchez MA (1991) A study of the miscibility of bile components in mixed monolayers at the air-liquid interface I. Cholesterol, lecithin, and lithocholic acid. Colloid Polym Sci 269:77–84. doi:10.1007/BF00654662

    Article  CAS  Google Scholar 

  98. Caetano W, Ferreira M, Tabak M, Mosquera Sanchez MI, Oliveira Jr ON, Krüger P, Schalke M, Lösche M (2001) Cooperativity of phospholipid reorganization upon interaction of dipyridamole with surface monolayers on water. Biophys Chem 91:21–35. doi:10.1016/S0301-4622(01)00145-4

    Article  CAS  Google Scholar 

  99. Hidalgo AA, Caetano W, Tabak M, Oliveira Jr ON (2004) Interaction of two phenothiazine derivatives with phospholipid monolayers. Biophys Chem 109:85–104. doi:10.1016/j.bpc.2003.10.020

    Article  CAS  Google Scholar 

  100. Moraes ML, Bonardi C, Mendonça CR, Campana PT, Lottersberger J, Tonarelli G, Oliveira Jr ON, Beltramini LM (2005) Cooperative effects in phospholipid monolayers induced by a peptide from HIV-1 capsid protein. Colloids Surf B Biointerfaces 41:15–20. doi:10.1016/j.colsurfb.2004.10.026

    Article  CAS  Google Scholar 

  101. Pickholz M, Oliveira Jr ON, Skaf MS (2006) Molecular dynamics simulations of neutral chlorpromazine in zwitterionic phospholipid monolayers. J Phys Chem B 110:8804–14. doi:10.1021/jp056678o

    Article  CAS  Google Scholar 

  102. Torrano AA, Pereira ÂS, Oliveira Jr ON, Barros-Timmons A (2013) Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models. Colloids Surf B Biointerfaces 108:120–6. doi:10.1016/j.colsurfb.2013.02.014

    Article  CAS  Google Scholar 

  103. Caseli L, Pavinatto FJ, Nobre TM, Zaniquelli MED, Viitala T, Oliveira Jr ON (2008) Chitosan as a removing agent of beta-lactoglobulin from membrane models. Langmuir 24:4150–6. doi:10.1021/la7038762

    Article  CAS  Google Scholar 

  104. Casal E, Montilla A, Moreno FJ, Olano A, Corzo N (2006) Use of chitosan for selective removal of β-lactoglobulin from whey. J Dairy Sci 89:1384–1389

    Article  CAS  Google Scholar 

  105. Damalio JCP, Nobre TM, Lopes JL, Oliveira Jr ON, Araújo APU (2013) Lipid interaction triggering Septin2 to assembly into β-sheet structures investigated by Langmuir monolayers and PM-IRRAS. Biochim Biophys Acta 1828:1441–8. doi:10.1016/j.bbamem.2013.02.003

    Article  CAS  Google Scholar 

  106. vanden Akker CC, Engel MFM, Velikov KP, Bonn M, Koenderink GH (2011) Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure. J Am Chem Soc 133:18030–3. doi:10.1021/ja206513r

    Article  CAS  Google Scholar 

  107. Riul A, Dantas CAR, Miyazaki CM, Oliveira Jr ON (2010) Recent advances in electronic tongues. Analyst 135:2481–95. doi:10.1039/c0an00292e

    Article  CAS  Google Scholar 

  108. Toko K (1996) Taste sensor with global selectivity. Mater Sci Eng C 4:69–82. doi:10.1016/0928-4931(96)00134-8

    Article  Google Scholar 

  109. Dulac C (2000) The physiology of taste, vintage 2000. Cell 100:607–610. doi:10.1016/S0092-8674(00)80697-2

    Article  CAS  Google Scholar 

  110. Riul A, dos Santos DS, Wohnrath K, Di Tommazo R, Carvalho ACPLF, Fonseca FJ, Oliveira Jr ON, Taylor DM, Mattoso LHC (2002) Artificial taste sensor: efficient combination of sensors made from Langmuir − Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 18:239–245. doi:10.1021/la011017d

  111. Taylor DM, Macdonald AG (1987) AC admittance of the metal/insulator/electrolyte interface. J Phys D Appl Phys 20:1277

    Article  CAS  Google Scholar 

  112. Gorban AN, Kégl B, Wunsch DC, Zinovyev A (2007) Principal manifolds for data visualisation and dimension reduction. Springer, Berlin

    Google Scholar 

  113. Ferreira M, Riul A, Wohnrath K, Fonseca FJ, Oliveira Jr ON, Mattoso LHC (2003) High-performance taste sensor made from Langmuir − Blodgett films of conducting polymers and a ruthenium complex. Anal Chem 75:953–955. doi:10.1021/ac026031p

    Article  CAS  Google Scholar 

  114. Dos Santos DS, Riul A, Malmegrim RR, Fonseca FJ, Oliveira Jr ON, Mattoso LHC (2003) A layer-by-layer film of chitosan in a taste sensor application. Macromol Biosci 3:591–595. doi:10.1002/mabi.200350027

    Article  CAS  Google Scholar 

  115. Liu M, Wang J, Li D, Wang M (2012) Electronic tongue coupled with physicochemical analysis for the recognition of orange beverages. J Food Qual 35:429–441. doi:10.1111/jfq.12004

    Article  CAS  Google Scholar 

  116. Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T (2005) An electronic tongue in the dairy industry. Sens Actuators B Chem 111–112:299–304. doi:http://dx.doi.org/10.1016/j.snb.2005.05.003

  117. Riul A, Gallardo Soto AM, Mello SVV, Bone S, Taylor DMM, Mattoso LHC (2003) An electronic tongue using polypyrrole and polyaniline. Synth Met 132:109–116. doi:10.1016/S0379-6779(02)00107-8

  118. Wiziack NKL, Paterno LG, Fonseca FJ, Mattoso LHC (2007) Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films. Sens Actuators B 122:484–492. doi:10.1016/j.snb.2006.06.016

    Article  CAS  Google Scholar 

  119. Borato CE, Leite FL, Mattoso LHC, Goy RC, Filho SPC, de Vasconcelos CL, da Trindade Neto CG, Pereira MP, Fonseca JLC, Oliveira Jr ON (2006) Layer-by-layer films of poly(o-ethoxyaniline), chitosan and chitosan-poly(methacrylic acid) nanoparticles and their application in an electronic tongue. IEEE Trans Dielectr Electr Insul 13:1101–1109. doi:10.1109/TDEI.2006.247838

    CAS  Google Scholar 

  120. Brugnollo ED, Paterno LG, Leite FL, Fonseca FJ, Constantino CJL, Antunes PA, Mattoso LHC (2008) Fabrication and characterization of chemical sensors made from nanostructured films of poly(o-ethoxyaniline) prepared with different doping acids. Thin Solid Films 516:3274–3281. doi:10.1016/j.tsf.2007.08.118

    Article  CAS  Google Scholar 

  121. Volpati D, Alessio P, Zanfolim AA, Storti FC, Job AE, Ferreira M, Riul A, Oliveira Jr ON, Constantino CJL (2008) Exploiting distinct molecular architectures of ultrathin films made with iron phthalocyanine for sensing. J Phys Chem B 112:15275–82. doi:10.1021/jp804159h

    Article  CAS  Google Scholar 

  122. Ferreira EJ, Pereira RCT, Delbem ACB, Oliveira Jr ON, Mattoso LHC (2007) Random subspace method for analysing coffee with electronic tongue. Electron Lett 43:1138. doi:10.1049/el:20071182

    Article  Google Scholar 

  123. Zucolotto V, Daghastanli KRP, Hayasaka CO, Riul A, Ciancaglini P, Oliveira Jr ON (2007) Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing. Anal Chem 79:2163–7. doi:10.1021/ac0616153

    Article  CAS  Google Scholar 

  124. Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40:19–29. doi:10.1039/c0cs00001a

    Article  CAS  Google Scholar 

  125. Takahashi S, Sato K, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal Bioanal Chem 402:1749–58. doi:10.1007/s00216-011-5317-4

    Article  CAS  Google Scholar 

  126. Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ (2011) Biosensing with quantum dots: a microfluidic approach. Sensors (Basel) 11:9732–63. doi:10.3390/s111009732

    Article  CAS  Google Scholar 

  127. Yan Y, Björnmalm M, Caruso F (2014) Assembly of layer-by-layer particles and their interactions with biological systems. Chem Mater 26:452–460. doi:10.1021/cm402126n

    Article  CAS  Google Scholar 

  128. Caseli L, Crespilho FN, Nobre TM, Zaniquelli MED, Zucolotto V Jr, Oliveira Jr ON (2008) Using phospholipid Langmuir and Langmuir–Blodgett films as matrix for urease immobilization. J Colloid Interface Sci 319:100–108, doi:http://dx.doi.org/10.1016/j.jcis.2007.12.007

  129. Caseli L, Moraes ML, Zucolotto V, Ferreira M, Nobre TM, Zaniquelli MED, Rodrigues Filho UP, Oliveira Jr ON (2006) Fabrication of phytic acid sensor based on mixed phytase − lipid Langmuir − Blodgett films. Langmuir 22:8501–8508. doi:10.1021/la061799g

    Article  CAS  Google Scholar 

  130. Pavinatto FJ, Fernandes EGR, Alessio P, Constantino CJL, de Saja JA, Zucolotto V, Apetrei C, Oliveira Jr ON, Rodriguez-Mendez ML (2011) Optimized architecture for tyrosinase-containing Langmuir–Blodgett films to detect pyrogallol. J Mater Chem 21:4995. doi:10.1039/c0jm03864d

    Article  CAS  Google Scholar 

  131. Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov AO, Gang O (2013) Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett 13:3145–51. doi:10.1021/nl401107g

    Article  CAS  Google Scholar 

  132. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–41. doi:10.1021/ar8001377

    Article  CAS  Google Scholar 

  133. Manickam A, Johnson CA, Kavusi S, Hassibi A (2012) Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors. Sensors (Basel) 12:14467–14488. doi:10.3390/s121114467

    Article  CAS  Google Scholar 

  134. Marzo FF, Pierna AR, Barranco J, Lorenzo A, Barroso J, García JA, Pérez A (2008) Determination of trace metal release during corrosion characterization of FeCo-based amorphous metallic materials by stripping voltammetry. New materials for GMI biosensors. J Non Cryst Solids 354:5169–5171. doi:10.1016/j.jnoncrysol.2008.08.014

    Article  CAS  Google Scholar 

  135. Caseli L, dos Santos DS, Foschini M, Gonçalves D, Oliveira Jr ON (2006) The effect of the layer structure on the activity of immobilized enzymes in ultrathin films. J Colloid Interface Sci 303:326–31. doi:10.1016/j.jcis.2006.07.013

    Article  CAS  Google Scholar 

  136. Ferreira M, Fiorito PA, Oliveira Jr ON, Córdoba de Torresi SI (2004) Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosens Bioelectron 19:1611–5. doi:10.1016/j.bios.2003.12.025

    Article  CAS  Google Scholar 

  137. Crespilho FN, Emilia Ghica M, Florescu M, Nart FC, Oliveira Jr ON, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8:1665–1670. doi:10.1016/j.elecom.2006.07.032

    Article  CAS  Google Scholar 

  138. De Oliveira RF, de Moraes ML, Oliveira Jr ON, Ferreira M (2011) Exploiting cascade reactions in bienzyme layer-by-layer films. J Phys Chem C 115:19136–19140. doi:10.1021/jp207610w

    Article  CAS  Google Scholar 

  139. Perinoto ÂC, Maki RM, Colhone MC, Santos FR, Migliaccio V, Daghastanli KR, Stabeli RG, Ciancaglini P, Paulovich FV, de Oliveira MCF, Oliveira Jr ON, Zucolotto V (2010) Biosensors for efficient diagnosis of leishmaniasis: innovations in bioanalytics for a neglected disease. Anal Chem 82:9763–8. doi:10.1021/ac101920t

    Article  CAS  Google Scholar 

  140. Siqueira JR, Abouzar MH, Poghossian A, Zucolotto V, Oliveira Jr ON, Schöning MJ (2009) Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens Bioelectron 25:497–501. doi:10.1016/j.bios.2009.07.007

    Article  CAS  Google Scholar 

  141. Siqueira JR, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira Jr ON, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770. doi:10.1021/jp904777t

    Article  CAS  Google Scholar 

  142. Oliveira Jr ON, Iost RM, Siqueira JR, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and application in smart devices based on molecular recognition. ACS Appl Mater Interfaces. doi:10.1021/am5015056

    Google Scholar 

  143. Siqueira JR, Maki RM, Paulovich FV, Werner CF, Poghossian A, de Oliveira MCF, Zucolotto V, Oliveira Jr ON, Schöning MJ (2010) Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor. Anal Chem 82:61–5. doi:10.1021/ac9024076

    Article  CAS  Google Scholar 

  144. De Oliveira MCF, Levkowitz H (2003) From visual data exploration to visual data mining: a survey. IEEE Trans Vis Comput Graph 9:378–394. doi:10.1109/TVCG.2003.1207445

    Article  Google Scholar 

  145. Paulovich FV, Maki RM, de Oliveira MCF, Colhone MC, Santos FR, Migliaccio V, Ciancaglini P, Perez KR, Stabeli RG, Perinoto AC, Oliveira Jr ON, Zucolotto V (2011) Using multidimensional projection techniques for reaching a high distinguishing ability in biosensing. Anal Bioanal Chem 400:1153–9. doi:10.1007/s00216-011-4853-2

    Article  CAS  Google Scholar 

  146. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C-18:401–409. doi:10.1109/T-C.1969.222678

    Article  Google Scholar 

  147. Paulovich FV, Moraes ML, Maki RM, Ferreira M, Oliveira Jr ON, de Oliveira MCF (2011) Information visualization techniques for sensing and biosensing. Analyst 136:1344–50. doi:10.1039/c0an00822b

    Article  CAS  Google Scholar 

  148. Aoki PHB, Carreon EGE, Volpati D, Shimabukuro MH, Constantino CJL, Aroca RF, Oliveira Jr ON, Paulovich FV (2013) SERS mapping in Langmuir-Blodgett films and single-molecule detection. Appl Spectrosc 67:563–9. doi:10.1366/12-06909

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from FAPESP, CNPq, CAPES and nBioNet network (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo N. Oliveira Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Oliveira, O.N., Pavinatto, F.J., Balogh, D.T. (2015). Fundamentals and Applications of Organised Molecular Films. In: Bardosova, M., Wagner, T. (eds) Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9921-8_10

Download citation

Publish with us

Policies and ethics