Skip to main content

Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions

  • Chapter
Book cover High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  CAS  PubMed  Google Scholar 

  • Annunziata O, Payne A, Wang Y (2008) Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics. J Am Chem Soc 130:13347–13352

    Article  CAS  PubMed  Google Scholar 

  • Asherie N (2004) Protein crystallization and phase diagrams. Methods 34:266–272

    Article  CAS  PubMed  Google Scholar 

  • Bennion BJ, Daggett V (2004) Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. Proc Natl Acad Sci U S A 101:6433–6438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Lobo RF, Sandler SI, Lenhoff AM (2006) Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions. Biotechnol Bioeng 94:177–188

    Article  CAS  PubMed  Google Scholar 

  • Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  PubMed  Google Scholar 

  • Crisman RL, Randolph TW (2010) Crystallization of recombinant human growth hormone at elevated pressures: pressure effects on PEG-induced volume exclusion interactions. Biotechnol Bioeng 107:663–672

    Article  CAS  PubMed  Google Scholar 

  • Curtis R, Lue L (2006) A molecular approach to bioseparations: protein-protein and protein-salt interactions. Chem Eng Sci 61:907–923

    Article  CAS  Google Scholar 

  • Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875

    Article  CAS  PubMed  Google Scholar 

  • De With G (2013) Liquid-state physical chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM (2008) Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys J 94:570–583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Adv Exp Med Biol 594:1–13

    Article  PubMed  Google Scholar 

  • Erlkamp M, Grobelny S, Winter R (2014) Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of staphylococcal nuclease. Phys Chem Chem Phys 16:5965–5976

    Article  CAS  PubMed  Google Scholar 

  • Fourme R, Kahn R, Mezouar M, Girard E, Hoerentrup C, Prangé T, Ascone I (2001) High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals. J Synchrotron Rad 8:1149–1156

    Article  CAS  Google Scholar 

  • George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Cryst D50:361–365

    CAS  Google Scholar 

  • Grobelny S (2014) Strukturuntersuchungen von Biomolekülen und Stimuli-sensitiven Polymeren unter hohen hydrostatischen Drücken. PhD thesis, Department of Chemistry and Chemical Biology, TU Dortmund University

    Google Scholar 

  • Grobelny S, Erlkamp M, Möller J, Tolan M, Winter R (2014) Intermolecular interactions in highly concentrated protein solutions upon compression and the role of the solvent. J Chem Phys 141:22D506

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Jaenicke R (1991) Growth inhibition of lysozyme crystals at high hydrostatic pressure. FEBS Lett 284:87–90

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Jaenicke R (1993) A kinetic model explaining the effect of hydrostatic pressure on nucleation and growth of lysozyme crystals. Biophys Chem 45:245–252

    Article  CAS  Google Scholar 

  • Grudzielanek S, Smirnovas V, Winter R (2006) Solvation-assisted pressure tuning of insulin fibrillation: from novel aggregation pathways to biotechnological applications. J Mol Biol 356:497–509

    Article  CAS  PubMed  Google Scholar 

  • Gunton JD, Shiryayev A, Pagan DL (2007) Protein condensation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hansen J-P, McDonald IR (2013) Theory of simple liquids. Elsevier, Amsterdam

    Google Scholar 

  • Heremans K, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386:353–370

    Article  CAS  PubMed  Google Scholar 

  • Hiemenz PC (1997) Principles of colloid and surface chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Hofmeister F (1888) Zur Lehre der Wirkung der Salze. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Elsevier, Amsterdam

    Google Scholar 

  • Javid N, Vogtt K, Krywka C, Tolan M, Winter R (2007a) Capturing the interaction potential of amyloidogenic proteins. Phys Rev Lett 99:028101

    Article  PubMed  Google Scholar 

  • Javid N, Vogtt K, Krywka C, Tolan M, Winter R (2007b) Protein-protein interactions in complex cosolvent solutions. Chem Phys Chem 8:679–689

    CAS  PubMed  Google Scholar 

  • Kadri A, Damak M, Jenner G, Lorber B, Giegé R (2003) Investigating the nucleation of protein crystals with hydrostatic pressure. J Phys Condens Matter 15:8253–8262

    Article  CAS  Google Scholar 

  • Kadri A, Lorber B, Charron C, Robert MC, Capelle B, Damak M, Jenner G, Giegé R (2005) Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure. Acta Cryst D61:784–788

    CAS  Google Scholar 

  • Katayama Y, Hattori T, Saitoh H, Ikeda T, Aoki K, Fukui H, Funakoshi K (2010) Structure of liquid water under high pressure up to 17 GPa. Phys Rev B 81:014109

    Article  Google Scholar 

  • Krywka C, Sternemann C, Paulus M, Javid N, Winter R, Al-Sawalmih A, Yi S, Raabe D, Tolan M (2007) The small-angle and wide-angle x-ray scattering set-up at beamline BL9 of DELTA. J Synchrotron Rad 14:244–251

    Article  CAS  Google Scholar 

  • Krywka C, Sternemann C, Paulus M, Tolan M, Royer C, Winter R (2008) Effect of osmolytes on pressure-induced unfolding of proteins: a high-pressure SAXS study. Chem Phys Chem 9:2809–2815

    CAS  PubMed  Google Scholar 

  • Kuehner DE, Engmann J, Fergg F, Wernick M, Blanch HW, Prausnitz JM (1999) Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions. J Phys Chem B 103:1368–1374

    Article  CAS  Google Scholar 

  • Kuffel A, Zielkiewicz J (2010) The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model. J Chem Phys 133:035102

    Article  PubMed  Google Scholar 

  • Kundrot CE, Richards FM (1986) Collection and processing of x-ray diffraction data from protein crystals at high pressure. J Appl Cryst 19:208–213

    Article  CAS  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  PubMed  Google Scholar 

  • Liu Y, Chen W-R, Chen S-H (2005) Cluster formation in two-Yukawa fluids. J Chem Phys 122:44507

    Article  PubMed  Google Scholar 

  • Lorber B, Jenner G, Giege R (1996) Effect of high hydrostatic pressure on nucleation and growth of protein crystals. J Cryst Growth 158:103–117

    Article  CAS  Google Scholar 

  • Ludwig R (2001) Water: from clusters to the bulk. Angew Chem Int Ed 40:1808–1827

    Article  CAS  Google Scholar 

  • Meersman F, Bowron D, Soper AK, Koch MHJ (2009) Counteraction of urea by trimethylamine N-oxide is due to direct interaction. Biophys J 97:2559–2566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meersman F, Daniel I, Bartlett D, Winter R, Hazael R, McMillan PF (2013) High-pressure biochemistry and biophysics. Rev Mineral Geochem 75:607–648

    Article  CAS  Google Scholar 

  • Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Winter R (2008) Cold- and pressure-induced dissociation of protein aggregates and amyloid fibrils. Angew Chem Int Ed 47:6518–6521

    Article  CAS  Google Scholar 

  • Möller J, Schroer MA, Erlkamp M, Grobelny S, Paulus M, Tiemeyer S, Wirkert FJ, Tolan M, Winter R (2012) The effect of ionic strength, temperature, and pressure on the interaction potential of dense protein solutions: from nonlinear pressure response to protein crystallization. Biophys J 102:2641–2648

    Article  PubMed Central  PubMed  Google Scholar 

  • Möller J, Grobelny S, Schulze J, Bieder S, Steffen A, Erlkamp M, Paulus M, Tolan M, Winter R (2014a) Reentrant liquid-liquid phase separation in protein solutions at elevated hydrostatic pressures. Phys Rev Lett 112:028101

    Article  PubMed  Google Scholar 

  • Möller J, Grobelny S, Schulze J, Steffen A, Bieder S, Paulus M, Tolan M, Winter R (2014b) Specific anions effects on the pressure dependence of the protein-protein interaction potential. Phys Chem Chem Phys 16:7423–7429

    Article  PubMed  Google Scholar 

  • Muschol M, Rosenberger F (1997) Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J Chem Phys 107:1953–1962

    Article  CAS  Google Scholar 

  • Nagatoshi Y, Sazaki G, Suzuki Y, Miyashita S, Matsui T, Ujihara T, Fujiwara K, Usami N, Nakajima K (2003) Effects of high pressure on the growth kinetics of orthorhombic lysozyme crystals. J Cryst Growth 254:188–195

    Article  CAS  Google Scholar 

  • Niebuhr M, Koch MHJ (2005) Effects of urea and trimethylamine-N-oxide (TMAO) on the interactions of lysozyme in solution. Biophys J 89:1978–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noro MG, Frenkel D (2000) Extended corresponding-states behavior for particles with variable range attractions. J Chem Phys 113:2941–2944

    Article  CAS  Google Scholar 

  • Ortore MG, Sinibaldi R, Spinozzi F, Carsughi F, Clemens D, Bonincontro A, Mariani P (2008) New insights into urea action on proteins: a SANS study of the lysozyme case. J Phys Chem B 112:12881–12887

    Article  CAS  PubMed  Google Scholar 

  • Ortore MG, Spinozzi F, Mariani P, Paciaroni A, Barbosa LR, Amenitsch H, Steinhart M, Ollivier J, Russo D (2009) Combining structure and dynamics: non-denaturing high-pressure effect on lysozyme in solution. J R Soc Interface 6:S619–S634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panuszko A, Bruździak P, Zielkiewicz J, Wyrzykowski D, Stangret J (2009) Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme. J Phys Chem B 113:14797–14809

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Patey GN (2007) Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions. J Am Chem Soc 129:4476–4482

    Article  CAS  PubMed  Google Scholar 

  • Poon WCK, Egelhaaf SU, Beales PA, Salonen A, Sawyer L (2000) Protein crystallization: scaling of charge and salt concentration in lysozyme solutions. J Phys Condens Matter 12:L569–L574

    Article  CAS  Google Scholar 

  • Ravindra R, Zhao S, Gies H, Winter R (2004) Protein encapsulation in mesoporous silicate: the effects of confinement on protein stability, hydration, and volumetric properties. J Am Chem Soc 126:12224–12225

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger F, Howard SB, Sowers JW, Nyce TA (1993) Temperature dependence of protein solubility – determination and application to crystallization in x-ray capillaries. J Cryst Growth 129:1–12

    Article  CAS  Google Scholar 

  • Russo D, Ortore MG, Spinozzi F, Mariani P, Loupiac C, Annighofer B, Paciaroni A (2013) The impact of high hydrostatic pressure on structure and dynamics of β-lactoglobulin. Biochim Biophys Acta 1830:4974–4980

    Article  CAS  PubMed  Google Scholar 

  • Saikumar MV, Glatz CE, Larson MA (1995) Crystallization of lysozyme at high pressures. J Cryst Growth 151:173–179

    Article  CAS  Google Scholar 

  • Sauter C, Otálora F, Gavira JA, Vidal O, Giegé R, García-Ruiz JM (2001) Structure of tetragonal hen egg-white lysozyme at 0.94 Å from crystals grown by the counter-diffusion method. Acta Cryst D57:1119–1126

    CAS  Google Scholar 

  • Sazaki G, Nagatoshi Y, Suzuki J, Durbin SD, Miyashita S, Nakada T, Komatsu H (1999) Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. J Cryst Growth 196:204–209

    Article  CAS  Google Scholar 

  • Schall CA, Wiencek JM, Yarmush M, Arnold E (1994) Lysozyme crystal growth reduced at high pressure. J Cryst Growth 135:548–554

    Article  CAS  Google Scholar 

  • Schroer MA, Markgraf J, Wieland DC, Sahle CJ, Möller J, Paulus M, Tolan M, Winter R (2011a) Nonlinear pressure dependence of the interaction potential of dense protein solutions. Phys Rev Lett 106:178102

    Article  PubMed  Google Scholar 

  • Schroer MA, Zhai Y, Wieland DC, Sahle CJ, Nase J, Paulus M, Tolan M, Winter R (2011b) Exploring the piezophilic behavior of natural cosolvent mixtures. Angew Chem Int Ed 123:11613–11616

    Article  Google Scholar 

  • Sedgwick H, Cameron JE, Poon WC, Egelhaaf SU (2007) Protein phase behavior and crystallization: effect of glycerol. J Chem Phys 127:125102

    Article  CAS  PubMed  Google Scholar 

  • Seeliger J, Werkmüller A, Winter R (2013) Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity. PLoS One 8:e69652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Semenyuk AV, Svergun DI (1991) GNOM – a program package for small-angle scattering data processing. J Appl Cryst 24:537–540

    Article  Google Scholar 

  • Silva JL, Foguel D, Royer CA (2001) Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci 26:612–618

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D (2014) High-pressure chemical biology and biotechnology. Chem Rev 114:7239–7267

    Article  CAS  PubMed  Google Scholar 

  • Smeller L, Meersman F, Heremans K (2006) Refolding studies using pressure: the folding landscape of lysozyme in the pressure-temperature plane. Biochim Biophys Acta 1764:497–505

    Article  CAS  PubMed  Google Scholar 

  • Soper AK, Ricci MA (2000) Structures of high-density and low-density water. Phys Rev Lett 84:2881–2884

    Article  CAS  PubMed  Google Scholar 

  • Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–495

    Article  CAS  PubMed  Google Scholar 

  • Stradner A, Cardinaux F, Schurtenberger P (2006) Comment on “Effective long-range attraction between protein molecules in solution studied by small angle neutron scattering”. Phys Rev Lett 96:219801

    Article  PubMed  Google Scholar 

  • Stradner A, Cardinaux F, Egelhaaf SU, Schurtenberger P (2008) Do equilibrium clusters exist in concentrated lysozyme solutions? Proc Natl Acad Sci U S A 105:E75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki Y, Sazaki G, Miyashita S, Sawada T, Tamura K, Komatsu H (2002a) Protein crystallization under high pressure. Biochim Biophys Acta 1595:345–356

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Sazaki G, Visuri K, Tamura K, Nakajima K, Yanagiya S (2002b) Significant decrease in the solubility of glucose isomerase crystals under high pressure. Cryst Growth Des 2:321–324

    Article  CAS  Google Scholar 

  • Suzuki Y, Sazaki G, Matsui T, Nakajima K, Tamura K (2005) High-pressure acceleration of the growth kinetics of glucose isomerase crystals. J Phys Chem B 109:3222–3226

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, Oxford

    Book  Google Scholar 

  • Takano KJ, Harigae H, Kawamura Y, Ataka M (1997) Effect of hydrostatic pressure on the crystallization of lysozyme based on in situ observations. J Cryst Growth 171:554–558

    Article  CAS  Google Scholar 

  • Tardieu A, Bonneté F, Finet S, Vivarès D (2002) Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules. Acta Cryst D58:1549–1553

    CAS  Google Scholar 

  • Thomson JA, Schurtenberger P, Thurston GM, Benedek GB (1987) Binary liquid phase separation and critical phenomena in a protein/water solution. Proc Natl Acad Sci U S A 84:7079–7083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  • Visuri K, Kaipainen E, Kivimäki J, Niemi H, Leisola M, Palosaari S (1990) A new method for protein crystallization using high pressure. Nat Biotechnol 8:547–549

    Article  CAS  Google Scholar 

  • Vliegenthart GA, Lekkerkerker HNW (2000) Predicting the gas-liquid critical point from the second virial coefficient. J Chem Phys 112:5364–5369

    Article  CAS  Google Scholar 

  • Waghmare RY, Webb JN, Randolph TW, Larson MA, Glatz CE (2000) Pressure dependence of subtilisin crystallization kinetics. J Cryst Growth 208:678–686

    Article  CAS  Google Scholar 

  • Webb JN, Waghmare RY, Carpenter FJ, Glatz CE, Randolph TW (1999) Pressure effect on subtilisin crystallization and solubility. J Cryst Growth 205:563–574

    Article  CAS  Google Scholar 

  • Weck G, Eggert J, Loubeyre P, Desbiens N, Bourasseau E, Maillet J-B, Mezouar M, Hanfland M (2009) Phase diagram and isotopic effects of normal and deuterated water studied via x-ray diffraction up to 4.5 GPa and 500 K. Phys Rev B 80:180202

    Article  Google Scholar 

  • Wei H, Fan Y, Gao YQ (2010) Effects of urea, tetramethyl urea, and trimethylamine N-oxide on aqueous solution structure and solvation of protein backbones: a molecular dynamics simulation study. J Phys Chem B 114:557–568

    Article  CAS  PubMed  Google Scholar 

  • Weingärtner H, Franck EU, Wiegand G, Dahmen N, Frimmel FH, Gordalla BC, Johannsen K, Summers RS, Höll W, Jekel M, Gimbel R, Rautenbach R, Glaze WH (1996) Water. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Winter R, Lopes D, Grudzielanek S, Vogtt K (2007) Towards an understanding of the temperature/pressure configurational and free-energy landscape of biomolecules. J Non-Equilib Thermodyn 32:41–97

    CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Zemb T, Lindner P (2002) Neutron, X-rays and light scattering methods applied to soft condensed matter. Elsevier, Amsterdam

    Google Scholar 

  • Zhang F, Skoda MW, Jacobs RM, Martin RA, Martin CM, Schreiber F (2007) Protein interactions studied by SAXS: effect of ionic strength and protein concentration. J Phys Chem B 111:251–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Roosen-Runge F, Skoda MW, Jacobs RM, Wolf M, Callow P, Frielinghaus H, Pipich V, Prévost S, Schreiber F (2011) Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. Phys Chem Chem Phys 14:2483–2493

    Article  Google Scholar 

  • Zhao S, Gies H, Winter R (2007) Stability of proteins confined in MCM-48 mesoporous molecular sieves. Z Phys Chem 221(139):154

    Google Scholar 

Download references

Acknowledgments

Financial support from the DFG Research Unit FOR 1979 and in part of the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, R. (2015). Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_8

Download citation

Publish with us

Policies and ethics