Skip to main content

Why and How Does Pressure Unfold Proteins?

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

This year, 2014, marks the 100th anniversary of the first publication reporting the denaturation of proteins by high hydrostatic pressure (Bridgman 1914). Since that time a large and recently increasing number of studies of pressure effects on protein stability have been published, yet the mechanism for the action of pressure on proteins remains subject to considerable debate. This review will present an overview from this author’s perspective of where this debate stands today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrick D, Ferreiro DU, Komives EA (2008) Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 18:27–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley CM, Barrick D (2006) The notch ankyrin domain folds via a discrete, centralized pathway. Structure 14:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Brandts JF, Oliveira RJ, Westort C (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 9:1038–1047

    Google Scholar 

  • Bridgman PW (1914) The coagulation of albumin by pressure. J Biol Chem 19:511–512

    CAS  Google Scholar 

  • Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13:507–532

    Article  CAS  Google Scholar 

  • Frye KJ, Royer CA (1998) Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci 7:2217–2222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gal M, Kern T, Schanda P, Frydman L, Brutscher B (2009) An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates. J Biomol NMR 43:1–10

    Article  CAS  PubMed  Google Scholar 

  • Galamba N (2013) Water’s structure around hydrophobic solutes and the iceberg model. J Phys Chem B 117:2153–2159

    Article  CAS  PubMed  Google Scholar 

  • Galamba N (2014) Water tetrahedrons, hydrogen-bond dynamics, and the orientational mobility of water around hydrophobic solutes. J Phys Chem B 118:4169–4176

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KR, Sharp KA (2003) A new angle on heat capacity changes in hydrophobic solvation. J Am Chem Soc 125:9853–9860

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442

    Article  CAS  PubMed  Google Scholar 

  • Herberhold H, Winter R (2002) Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry 41:2396–2401

    Article  CAS  PubMed  Google Scholar 

  • Huang DM, Chandler D (2000) Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc Natl Acad Sci U S A 97:8324–8327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacob MH, Saudan C, Holtermann G, Martin A, Perl D, Merbach AE, Schmid FX (2002) Water contributes actively to the rapid crossing of a protein unfolding barrier. J Mol Biol 318:837–845

    Article  CAS  PubMed  Google Scholar 

  • Kitahara R, Royer C, Yamada H, Boyer M, Saldana JL, Akasaka K, Roumestand C (2002) Equilibrium and pressure-jump relaxation studies of the conformational transitions of P13MTCP1. J Mol Biol 320:609–628

    Article  CAS  PubMed  Google Scholar 

  • Lepori L, Gianni P (2000) Partial molar volumes of ionic and nonionic organic solutes in water: a simple additivity scheme based on the intrinsic volume approach. J Solut Chem 29:405–447

    Article  CAS  Google Scholar 

  • Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302:144–160

    Article  CAS  PubMed  Google Scholar 

  • Meersman F, Smeller L, Heremans K (2006) Protein stability and dynamics in the pressure-temperature plane. Biochim Biophys Acta 1764:346–354

    Article  CAS  PubMed  Google Scholar 

  • Mei G, Di VA, Campeggi FM, Gilardi G, Rosato N, De MF, Finazzi-Agro A (1999) The effect of pressure and guanidine hydrochloride on azurins mutated in the hydrophobic core. Eur J Biochem 265:619–626

    Article  CAS  PubMed  Google Scholar 

  • Mohana-Borges R, Silva JL, Ruiz-Sanz J, de Prat-Gay G (1999) Folding of a pressure-denatured model protein. Proc Natl Acad Sci U S A 96:7888–7893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, Garcia-Moreno BE, Royer CA (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci U S A 109:6945–6950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno EB, Roumestand C, Royer CA (2013) Effect of internal cavities on folding rates and routes revealed by real-time pressure-jump NMR spectroscopy. J Am Chem Soc 135:14610–14618

    Article  CAS  PubMed  Google Scholar 

  • Rouget JB, Schroer MA, Jeworrek C, Puhse M, Saldana JL, Bessin Y, Tolan M, Barrick D, Winter R, Royer CA (2010) Unique features of the folding landscape of a repeat protein revealed by pressure perturbation. Biophys J 98:2712–2721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA (2011) Size and sequence and the volume change of protein folding. J Am Chem Soc 133:6020–6027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasahara K, Nitta K (1999) Pressure-induced unfolding of lysozyme in aqueous guanidinium chloride solution. Protein Sci 8:1469–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  CAS  PubMed  Google Scholar 

  • Schanda P, Forge V, Brutscher B (2006) HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn Reson Chem 44:S177–S184

    Article  CAS  PubMed  Google Scholar 

  • Seemann H, Winter R, Royer CA (2001) Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease. J Mol Biol 307:1091–1102

    Article  CAS  PubMed  Google Scholar 

  • Street TO, Barrick D (2009) Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape. Protein Sci 18:58–68

    PubMed Central  CAS  PubMed  Google Scholar 

  • Street TO, Bradley CM, Barrick D (2007) Predicting coupling limits from an experimentally determined energy landscape. Proc Natl Acad Sci U S A 104:4907–4912

    Article  PubMed Central  PubMed  Google Scholar 

  • Till MS, Ullmann GM (2010) McVol – a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J Mol Model 16:419–429

    Article  CAS  PubMed  Google Scholar 

  • Tripp KW, Barrick D (2008) Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape. J Am Chem Soc 130:5681–5688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12:4217–4228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Royer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Royer, C.A. (2015). Why and How Does Pressure Unfold Proteins?. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_4

Download citation

Publish with us

Policies and ethics