Skip to main content

Pressure-Dependent Gene Activation in Yeast Cells

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few tens MPa decreases the growth rate and a few hundred MPa decreases the cellular viability. To find clues to understand how such pressure effects on living cells relating to damages on protein molecules, we employed yeast DNA microarrays and analyzed genome-wide gene-expression levels in yeast cells which have been exposed to different levels of hydrostatic pressure. These include the cells temporarily adapted to a high pressure (from 0.1 to 30 MPa) and to a low pressure (from 30 to 0.1 MPa). These conditions cause yeast cells decreases of growth rate. We also analyzed gene expression profiles from the cells recovering after the sublethal pressure treatment at 180 MPa at 4 °C for 0 min and at 40 MPa at 4 °C for 16 h. These conditions cause yeast cells decreases of cellular viability. The activated genes by the temporary adaptations to both of the high pressure and the low pressure suggest that proteins related to membrane biosynthesis and cell wall biosynthesis can be crucial targets of pressure-induced damages, whereas the activated genes under recovering conditions after exposure to the sublethal high pressure suggest that proteasome activity and proteins localized in endoplasmic reticulum can be the crucial targets or the essential factors to survive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2004) Piezophysiology of yeast: occurrence and significance. Cell Mol Biol 50:437–445

    CAS  PubMed  Google Scholar 

  • Abe F, Horikoshi K (1995) Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett 130:307–312

    Article  CAS  PubMed  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown SL, Stockdale VJ, Pettolino F, Pocock KF, de Barros Lopes M, Williams PJ, Bacic A, Fincher GB, Høj PB, Waters EJ (2007) Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Appl Microbiol Biotechnol 73:1363–1376

    Article  CAS  PubMed  Google Scholar 

  • Culbertson MR, Henry SA (1975) Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80:23–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwahashi H, Obuchi K, Kaul SC, Komatsu Y (1991) Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol Lett 80:325–328

    Article  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997a) Barotolerance is dependent on both trehalose and hsp104 but essentially different from thermotolerance in Saccharomyces cerevisiae. Lett Appl Microbiol 25:43–47

    Article  CAS  PubMed  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997b) Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  CAS  PubMed  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and heat shock proteins 104 in yeast. Appl Environ Microbiol 64:4614–4617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwahashi H, Shimizu H, Odani M, Komatsu Y (2003a) Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Extremophile 7:291–298

    Article  CAS  Google Scholar 

  • Iwahashi H, Ishidou E, Odani M, Homma T, Oka S (2003b) Low pressure shock response of yeast. In: Winter R (ed) Advances in high pressure bioscience and biotechnology. Springer, Heidelberg, pp 275–278

    Chapter  Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa E, Momose Y, Iwahashi H (2001) Correlation of the structures of agricultural fungicides to gene expression in Saccharomyces cerevisiae upon exposure to toxic doses. Environ Sci Tech 15:2788–2793

    Google Scholar 

  • Kitagawa E, Momose Y, Iwahashi H (2003) Correlation of the structures of agricultural fungicides to gene expression in Saccharomyces cerevisiae upon exposure to toxic doses. Environ Sci Tech 15:2788–2793

    Article  Google Scholar 

  • Kodaki T, Yamashita S (1987) Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. J Biol Chem 262:15428–15435

    CAS  PubMed  Google Scholar 

  • Koseki S, Yamamoto K (2006) Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int J Food Microbiol 110:108–111

    Article  CAS  PubMed  Google Scholar 

  • Masselot M, De Robichon-Szulmajster H (1975) Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet 139:121–132

    Article  CAS  PubMed  Google Scholar 

  • Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM (1999) Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol 19:7651–7660

    PubMed Central  CAS  PubMed  Google Scholar 

  • Momose Y, Iwahashi H (2001) Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ Toxicol Chem 20:2353–2360

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Watanabe T, Sato M, Momose Y, Nakahara T, Oka S, Iwahashi H (2003) DMSO exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. J Biol Chem 278:33185–33193

    Article  CAS  PubMed  Google Scholar 

  • Ohshima S, Nomura K, Iwahashi H (2013) Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment. High Pressure Res 33:308–314

    Article  CAS  Google Scholar 

  • O’Reilly CE, O’Connor PM, Kelly AL, Beresford TP, Murphy PM (2000) Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Appl Environ Microbiol 66:4890–4896

    Article  PubMed Central  PubMed  Google Scholar 

  • Osumi M, Sato M, Kobori H, Zha Hai feng, Ishijima AS, Hamada K, Shimada S (1996) Morphological effect of pressure stress on yeast. In: Hayashi R, Balony C (eds) High pressure bioscience and biotechnology. Elsevier, Amsterdam, pp 37–46

    Google Scholar 

  • Sonoike K, Setoyama T, Kuma Y, Shinno T, Fukumoto K, Ishihara M (1993) Effects of pressure and temperature on the death rate of Lactobacillus casei and Escherichia coli. In: Hayashi R (ed) High pressure bioscience and food science. Sanei Press, Kyoto, pp 213–219

    Google Scholar 

  • Tamura K, Shimizu T, Kourai H (1992) Effects of ethanol on the growth and elongation of Escherichia coli under high pressures up to 40 MPa. FEMS Microbiol Lett 78:321–324

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Higashi T, Rakwal R, Wakida S, Iwahashi H (2008) Development of a capillary electrophoresis-mass spectrometry method using polymer capillaries for metabolomic analysis of yeast. Electrophoresis 29:2016–2023

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Higashi T, Rakwal R, Shibato J, Wakida S, Iwahashi H (2010) The role of proteasome in yeast Saccharomyces cerevisiae response to sublethal high-pressure treatment. High Pres Res 30:519–523

    Article  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9:1464–1482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iwahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iwahashi, H. (2015). Pressure-Dependent Gene Activation in Yeast Cells. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_20

Download citation

Publish with us

Policies and ethics