Skip to main content

Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives

  • Chapter
High Pressure Bioscience

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

Biological processes associated with dynamic structural features of membranes are highly sensitive to changes in hydrostatic pressure and temperature. Marine organisms potentially experience a broad range of pressure and temperature fluctuations. Hence, they have specialized cell membranes to perform membrane protein functions under various environmental conditions. Although the effects of high pressure on artificial lipid bilayers have been investigated in detail, little is known about how high pressure affects the structure of natural cell membranes and how organisms cope with pressure alterations. This review focused on the recent advances in research on the effects of high pressure on microbial membranes, particularly on the use of time-resolved fluorescence anisotropy measurement to determine membrane dynamics in deep-sea piezophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2007) Probing for dynamics of amino acid uptake in living yeast using hydrostatic pressure proceedings for the 4th international conference on high pressure bioscience and biotechnology (Eds Abe F and Suzuki A ) 1: 134–138

    Google Scholar 

  • Abe F (2013) Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 183:3–8

    Article  CAS  PubMed  Google Scholar 

  • Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta 1788:743–752

    Article  CAS  PubMed  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe F, Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178:851–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe F, Usui K (2013) Effects of high hydrostatic pressure on the dynamic structure of living Escherichia coli membrane: a study using high-pressure time-resolved fluorescence anisotropy measurement. High Press Res 33:278–284

    Article  CAS  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartlett DH (1999) Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1:93–100

    CAS  PubMed  Google Scholar 

  • Brooks NJ, Ces O, Templer RH, Seddon JM (2011) Pressure effects on lipid membrane structure and dynamics. Chem Phys Lipids 164:89–98

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Macdonald AG (1989) The adaptation of biological membranes to temperature and pressure: fish from the deep and cold. J Bioenerg Biomembr 21:115–135

    Article  CAS  PubMed  Google Scholar 

  • de Freitas JM, Bravim F, Buss DS, Lemos EM, Fernandes AA, Fernandes PM (2012) Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. FEMS Yeast Res 12:871–878

    Article  PubMed  Google Scholar 

  • de Smedt H, Borghgraef R, Ceuterick F, Heremans K (1979) Pressure effects on lipid-protein interactions in (Na+ + K+)-ATPase. Biochim Biophys Acta 556:479–489

    Article  PubMed  Google Scholar 

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Chan O, Kato C, Sato T, Peeples T, Niggemeyer K (2003) Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885–887

    Article  CAS  PubMed  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  PubMed  Google Scholar 

  • Kaneshina S, Ichimori H, Hata T, Matsuki H (1998) Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta 1374:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H, Hosokawa M, Baba T, Sato SB, Esaki N (2009) Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J Bacteriol 191:632–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamoto J, Sato T, Nakasone K, Kato C, Mihara H, Esaki N, Kurihara T (2011) Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea DSS12, at high-hydrostatic pressures. Environ Microbiol 13 :2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Kobori H, Sato M, Tameike A, Hamada K, Shimada S, Osumi M (1995) Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  CAS  PubMed  Google Scholar 

  • Kusube M, Tamai N, Matsuki H, Kaneshina S (2005) Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes prodan and laurdan. Biophys Chem 117:199–206

    Article  CAS  PubMed  Google Scholar 

  • Matsuki H, Goto M, Tada K, Tamai N (2013) Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int J Mol Sci 14:2282–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338

    Article  CAS  PubMed  Google Scholar 

  • Periasamy N, Teichert H, Weise K, Vogel RF, Winter R (2009) Effects of temperature and pressure on the lateral organization of model membranes with functionally reconstituted multidrug transporter LmrA. Biochim Biophys Acta 1788:390–401

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kobori H, Ishijima SA, Feng ZH, Hamada K, Shimada S, Osumi M (1996) Schizosaccharomyces pombe is more sensitive to pressure stress than Saccharomyces cerevisiae. Cell Struct Funct 21:167–174

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R (1993) Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 40:123–131

    Article  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Mochizuki T, Uemura S, Hiraki T, Abe F (2013) Pressure-induced endocytic degradation of the Saccharomyces cerevisiae low-affinity tryptophan permease Tat1 is mediated by Rsp5 ubiquitin ligase and functionally redundant PPxY motif proteins. Eukaryot Cell 12:990–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S (2010) Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain. Ann N Y Acad Sci 1189:77–85

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT (2003) Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods 57:87–103

    Article  CAS  PubMed  Google Scholar 

  • Ulmer HM, Herberhold H, Fahsel S, Ganzle MG, Winter R, Vogel RF (2002) Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Appl Environ Microbiol 68:1088–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usui K, Hiraki T, Kawamoto J, Kurihara T, Nogi Y, Kato C, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta 1818:574–583

    Article  CAS  PubMed  Google Scholar 

  • Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383–402

    Article  CAS  PubMed  Google Scholar 

  • van Langen H, van Ginkel G, Shaw D, Levine YK (1989) The fidelity of response by 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene in time-resolved fluorescence anisotropy measurements on lipid vesicles. Effects of unsaturation, headgroup and cholesterol on orientational order and reorientational dynamics. Eur Biophys J 17:37–48

    Article  PubMed  Google Scholar 

  • Wang F, Xiao X, Ou HY, Gai Y, Wang F (2009) Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol 191:2574–2584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184

    Article  CAS  PubMed  Google Scholar 

  • Winter R, Dzwolak W (2005) Exploring the temperature-pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos Transact A Math Phys Eng Sci 363:537–562, discussion 562–563

    Article  CAS  Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was prepared by supports of grants from the Japan Society for the Promotion of Science (No. 24580122) and the Program for the Strategic Research Foundation at Private Universities by the Ministry of Education, Culture, Sports, Science, and Technology (2013-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyoshi Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abe, F. (2015). Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_18

Download citation

Publish with us

Policies and ethics