Skip to main content

How Do Membranes Respond to Pressure?

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 72))

Abstract

Bilayers formed by phospholipids are fundamental structures of biological membranes. The mechanical perturbation brought about by pressure significantly affects the membrane states of phospholipid bilayers. In this chapter, we focus our attention on the pressure responsivity for bilayers of some major phospholipids contained in biological membranes. At first, the membrane states and phase transitions of phospholipid bilayers depending on water content, temperature and pressure are explained by using the bilayer phase diagrams of dipalmitoylphosphatidylcholine (DPPC), which is the most familiar phospholipid in model membrane studies. Subsequently, the thermotropic and barotropic bilayer phase behavior of various kinds of phospholipids with different molecular structures is discussed from the comparison of their temperature – pressure phase diagrams to that of the DPPC bilayer. It turns out that a slight change in the molecular structure of the phospholipids produces a significant difference in the bilayer phase behavior. The systematic pressure studies on the phase behavior of the phospholipid bilayers reveal not only the pressure responsivity for the bilayers but also the role and meaning of several important phospholipids existing in real biological membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe F (2013) Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 183:3–8

    Article  CAS  PubMed  Google Scholar 

  • Applegate KR, Glomset TA (1986) Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J Lipid Res 27:658–680

    CAS  PubMed  Google Scholar 

  • Behan MK, Macdonald AG, Jones GR, Cossins AR (1992) Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish. Biochim Biophys Acta 1103:317–323

    Article  CAS  PubMed  Google Scholar 

  • Blume A (1983) Apparent molar heat capacities of phospholipids in aqueous dispersion. Effects of chain length and head group structure. Biochemistry 22:5436–5442

    Article  CAS  Google Scholar 

  • Braganza LF, Worcester DL (1986) Hydrostatic pressure induces hydrocarbon chain interdigitation in single component phospholipid bilayers. Biochemistry 25:2591–2596

    Article  CAS  PubMed  Google Scholar 

  • Broniec A, Goto M, Matsuki H (2009) A peculiar phase transition of plasmalogen bilayer membrane under high pressure. Langmuir 25:11265–11268

    Article  CAS  PubMed  Google Scholar 

  • Bultmann T, Lin H, Wang Z, Huang C (1991) Thermotropic and mixing behavior of mixed-chain phosphatidylcholines with molecular weights identical with that of L-α-dipalmitoylphosphatidylcholine. Biochemistry 30:7194–7202

    Article  CAS  PubMed  Google Scholar 

  • Caffrey M (1993) LIPIDAT, a database of thermodynamic data and associated information on lipid mesomorphic and polymorphic transitions. CRC Press, Boca Raton

    Google Scholar 

  • Chong PLG (2010) Archaebacterial bipolar tetraether lipids; physico-chemical and membrane properties. Chem Phys Lipids 163:253–265

    Article  CAS  PubMed  Google Scholar 

  • Chong PLG, Weber G (1983) Pressure dependence of 1,6-diphenyl-1,3,5-hexatrien fluorescence in single-component phosphatidylcholine liposomes. Biochemistry 22:5544–5550

    Article  CAS  Google Scholar 

  • Cossins AR, Macdonald AG (1989) The adaptation of biological membranes to temperature and pressure: fish from the deep and cold. J Bioenerg Biomembr 21:115–135

    Article  CAS  PubMed  Google Scholar 

  • Driscoll DA, Samarasinghe J, Adamy S, Jonas J, Jonas A (1991) Pressure effects on dipalmitoylphosphatidylcholine bilayers measured by 2H nuclear magnetic resonance. Biochemistry 30:3322–3327

    Article  CAS  PubMed  Google Scholar 

  • Epand RM (1985) High sensitivity differential scanning calorimetry of the bilayer to hexagonal phase transitions of diacylphosphatidylethanolamines. Chem Phys Lipids 36:387–393

    Article  CAS  Google Scholar 

  • Goto M, Kusube M, Tamai N, Matsuki H, Kaneshina S (2008) Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length. Biochim Biophys Acta 1778:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Ishida S, Tamai N, Matsuki H, Kaneshina S (2009) Chain asymmetry alters thermotropic and barotropic properties of phospholipid bilayer membranes. Chem Phys Lipids 161:65–76

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Wilk A, Kazama A, Chodankar S, Kohlbrecher J, Matsuki H (2011a) Chain elongation of diacylphosphatidylcholine induces fully bilayer interdigitation under atmospheric pressure. Colloids Surf B: Biointerfaces 84:44–48

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Matsui T, Tamai N, Matsuki H, Kaneshina S (2011b) Prodan fluorescence detects the bilayer packing of asymmetric phospholipids. Colloids Surf B: Biointerfaces 84:55–62

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Endo T, Yano T, Tamai N, Kohlbrecher J, Matsuki H (2015) Comprehensive characterization of temperature- and pressure-induced phase transitions for saturated phosphatidylcholines containing longer chain homologs. Colloids Surf B Biointerfaces 128:389–397

    Google Scholar 

  • Gruner SM, Tate MW, Kirk GL, So PTC, Turner DC, Keane DT, Tilcock CPS, Cullis PR (1988) X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry 27:2853–2866

    Article  CAS  PubMed  Google Scholar 

  • Han X, Gross RW (1990) Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry 29:4992–4996

    Article  CAS  PubMed  Google Scholar 

  • Hauser H, Pascher I, Pearson RH, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    Article  CAS  PubMed  Google Scholar 

  • Hayashi R (ed) (2002) Trends in high pressure bioscience and biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Weiheim

    Book  Google Scholar 

  • Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Natl Acad Sci U S A 102:9790–9795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holte LL, Separovic F, Gawrisch K (1996) Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 31:199–203

    Article  Google Scholar 

  • Huang C, Mason JT (1986) Structure and properties of mixed-chain phospholipid assemblies. Biochim Biophys Acta 864:423–470

    Article  CAS  PubMed  Google Scholar 

  • Ichimori H, Hata T, Yoshioka T, Matsuki H, Kaneshina S (1997) Thermotropic and barotropic phase transition on bilayer membranes of phospholipids with varying acyl chain-lengths. Chem Phys Lipids 89:97–105

    Article  CAS  Google Scholar 

  • Ichimori H, Hata T, Matsuki H, Kaneshina S (1998) Baroropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain-lengths. Biochim Biophys Acta 1414:165–174

    Article  CAS  PubMed  Google Scholar 

  • Ichimori H, Hata T, Matsuki H, Kaneshina S (1999) Effect of unsaturated acyl chains on the thermotropic and barotropic phase transitions of phospholipid bilayer membranes. Chem Phys Lipids 100:151–154

    Article  CAS  Google Scholar 

  • Kaneshina S, Kamaya K, Ueda I (1983) Thermodynamics of pressure-anesthetic antagonism on the phase transition of lipid membranes. Displacement of anesthetic molecules. J Colloid Interface Sci 93:215–224

    Article  CAS  Google Scholar 

  • Kaneshina S, Tamura K, Kawakami H, Matsuki H (1992) Effects of pressure and ethanol on the phase behavior of dipalmitoylphosphatidylcholine multilamellar vesicles. Chem Lett 21:1963–1966

    Article  Google Scholar 

  • Kaneshina S, Ichimori H, Hata T, Matsuki H (1998) Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta 1374:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kim JT, Mattai J, Shipley GG (1987) Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry 26:6592–6598

    Article  CAS  PubMed  Google Scholar 

  • Kodama M (1986) Phase transition phenomena induced by the successive appearances of new types of aggregation states of water molecules in the “L-dipalmitoylphosphatidylcholine-water” system. Thermochim Acta 109:81–89

    Article  CAS  Google Scholar 

  • Kodama M, Miyata T (1995) Effect of Na+ concentrations on both size and multiplicity of multilamellar vesicles composed of negatively charged phospholipid as revealed by differential scanning calorimetry and electron microscopy. Thermochim Acta 267:365–372

    Article  CAS  Google Scholar 

  • Kodama M, Kuwabara M, Seki S (1982) Successive phase-transition phenomena and phase diagram of the phosphatidylcholine-water system as revealed by differential scanning calorimetry. Biochim Biophys Acta 689:567–570

    Article  CAS  Google Scholar 

  • Kodama M, Miyata T, Yokoyama T (1993) Crystalline cylindrical structures of Na+-bound dimyristoylphosphatidylglycerol as revealed by microcalorimetry and electron microscopy. Biochim Biophys Acta 1168:243–248

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Inoue H, Tsuchida Y (1995) The behavior of water molecules associated with structural changes in phosphatidylethanolamine assembly as studied by DSC. Thermochim Acta 266:373–384

    Article  CAS  Google Scholar 

  • Kodama M, Aoki H, Miyata T (1999) Effect of Na+ concentration on the subgel phases of negatively charged phosphatidylglycerol. Biophys Chem 79:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Kato H, Aoki H (2001) Comparison of differently bound molecules in the gel and subgel phases of a phospholipids bilyaer system. J Therm Anal Calorim 64:219–230

    Article  CAS  Google Scholar 

  • Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koynova R, Caffrey M (1994) Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids 69:1–34

    Article  CAS  PubMed  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    Article  CAS  PubMed  Google Scholar 

  • Kusube M, Matsuki H, Kaneshina S (2005) Thermotropic and barotropic phase transitions of N-methylated dipalmitoylphosphatidylethanolamine bilayers. Biochim Biophys Acta 1668:25–32

    Article  CAS  PubMed  Google Scholar 

  • Kusube M, Goto M, Tamai N, Matsuki H, Kaneshina S (2006) Bilayer phase transitions of N-methylated dioleoylphosphatidylethanolamines under high pressure. Chem Phys Lipids 142:94–102

    Article  CAS  PubMed  Google Scholar 

  • Laggner P, Lohner K, Degovics G, Müller K, Schuster A (1987) Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem Phys Lipids 44:31–60

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Thompson RB (1983) Differential polarized phase fluorometric studies of phospholipid bilayers under high hydrostatic pressure. Biochim Biophys Acta 732:359–371

    Article  CAS  PubMed  Google Scholar 

  • Lewis RNAH, McElhaney RN (2005) The mesomorphic phase behavior of lipid bilayers. In: Yeagle PL (ed) The structure of biological membranes, 2nd edn. CRC Press, New York, pp 66–69

    Google Scholar 

  • Lewis RNAH, Mak N, McElhaney RN (1987) A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry 26:6118–6126

    Article  CAS  PubMed  Google Scholar 

  • Lewis RNAH, Sykes BD, McElhaney RN (1988) Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry 27:880–887

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Wang Z, Huang C (1991) The influence of acyl chain-length asymmetry on the phase transition parameters of phosphatidylcholine dispersions. Biochim Biophys Acta 1067:17–28

    Article  CAS  PubMed  Google Scholar 

  • Lohner K (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids 81:167–184

    Article  CAS  PubMed  Google Scholar 

  • Ludwig H (ed) (1999) Advances in high pressure bioscience and biotechnology. Springer, Heidelberg

    Google Scholar 

  • Maruyama S, Matsuki H, Ichimori I, Kaneshina S (1996) Thermotropic and barotropic phase behavior of dihexadecylphosphatidylcholine bilayer membrane. Chem Phys Lipids 82:125–132

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Hata T, Matsuki H, Kaneshina S (1997a) Effects of pressure and local anesthetic tetracaine on dipalmitoylphosphatidylcholine bilayers. Biochim Biophys Acta 1325:272–280

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Hata T, Matsuki H, Kaneshina S (1997b) Effects of pressure and local anesthetic tetracaine on dihexadecylphosphatidylcholine bilayer membrane. Colloids Surf B: Biointerfaces 8:261–266

    Article  CAS  Google Scholar 

  • Matsuki H, Goto M, Kusube M, Tamai N, Kaneshina S (2005) Barotropic phase transitions of 1-palmitoyl-2-stearoylphosphatidylcholine bilayer membrane. Chem Lett 34:270–271

    Article  CAS  Google Scholar 

  • Matsuki H, Miyazaki E, Sakano F, Tamai N, Kaneshina S (2007) Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. Biochim Biophys Acta 1768:479–489

    Article  CAS  PubMed  Google Scholar 

  • Matsuki H, Goto M, Tada K, Tamai N (2013) Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int J Mol Sci 14:2282–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF, Wilkinson DA (1978) Density measurements and molecular interactions. Biophys J 23:159–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimoto M, Hata T, Goto M, Tamai N, Kaneshina S, Matsuki H, Ueda I (2009) Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics. Chem Phys Lipids 158:71–80

    Article  CAS  PubMed  Google Scholar 

  • Pabst G, Danner S, Karmakar S, Deutsch G, Raghunathany VA (2007) On the propensity of phosphatidylglycerols to form interdigitated phases. Biophys J 93:513–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paltauf F (1994) Ether lipids in biomembranes. Chem Phys Lipids 74:101–139

    Article  CAS  PubMed  Google Scholar 

  • Riske KA, Amaral LQ, Döbereiner HG, Lamy MT (2004) Mesoscopic structure in the chain-melting regime of anionic phospholipid vesicles: DMPG. Biophys J 86:3722–3733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruocco MJ, Siminovitch DJ, Griffin RG (1985) Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines. Biochemistry 24:2406–2411

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Emberley J, Morrow MR (2008) Pressure induces interdigitation differently in DPPC and DPPG. Eur Biophys J 37:783–792

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan KR, Kay RL, Nagle JF (1974) The pressure dependence of the lipid bilayer phase transition. Biochemistry 13:3494–3496

    Article  CAS  PubMed  Google Scholar 

  • Stümpel J, Nichsch A, Eibl H (1981) Calorimetric studies on saturated mixed-chain lecithin-water systems. Nonequivalence of acyl chains in the thermotropic phase transition. Biochemistry 20:662–665

    Article  PubMed  Google Scholar 

  • Stümpel J, Eibl H, Nichsch A (1983) X-ray analysis and calorimetry on phosphatidylcholine model membranes. The influence of length and position of acyl chains upon structure and phase behaviour. Biochim Biophys Acta 727:246–254

    Article  PubMed  Google Scholar 

  • Sueyoshi R, Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S (2006) Barotropic phase transition between the lamellar liquid crystal phase and the inverted hexagonal phase of dioleoylphosphatidylethanolamine. Colloids Surf B: Biointerfaces 50:85–88

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Miyazaki E, Goto M, Tamai N, Matsuki H, Kaneshina S (2009) Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines. Biochim Biophys Acta 1788:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S (2010) Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain. Ann N Y Acad Sci 1189:77–85

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Tamai N, Goto M, Kaneshina S, Matsuki H (2012) Morphological change of vesicle particles can produce a peculiar stepwise transition in dipalmitoylphosphatidylglycerol bilayer at high NaCl concentration. Chem Lett 41:304–306

    Article  CAS  Google Scholar 

  • Trudell JR, Payan DG, Chin JH, Cohen EN (1974) Pressure-induced elevation of phase transition temperature in dipalmitoylphosphatidylcholine bilayers. An electron spin resonance measurement of the enthalpy of phase transition. Biochim Biophys Acta 373:436–443

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Hiraki T, Kawamoto J, Kurihara T, Nogi Y, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta 1818:574–583

    Article  CAS  PubMed  Google Scholar 

  • Utoh S, Takemura T (1985) Phase transition of lipid multilamellar aqueous suspension under high pressure I. Investigation of phase diagram of dipalmitoylphosphatidylcholine bimembrane by high pressure-DTA and -dilatometry. Jpn J Appl Phys 24:356–360

    Article  CAS  Google Scholar 

  • Wann KT, Macdonald AG (1988) Actions and interactions of high pressure and general anesthetic. Prog Neurobiol 30:271–307

    Article  CAS  PubMed  Google Scholar 

  • Watts A, Harlos K, Maschke W, Marsh D (1978) Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration. Biochim Biophys Acta 510:63–74

    Article  CAS  PubMed  Google Scholar 

  • Watts A, Harlos K, Marsh D (1981) Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers evidence from x-ray diffraction. Biochim Biophys Acta 645:91–96

    Article  CAS  PubMed  Google Scholar 

  • Winter R (2001) Effects of hydrostatic pressure on lipid and surfactant phases. Curr Opin Colloid Interface Sci 6:303–312

    Article  CAS  Google Scholar 

  • Winter R (ed) (2003) Advances in high pressure bioscience and biotechnology, vol II. Springer, Heidelberg

    Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Article  CAS  Google Scholar 

  • Winter R, Pilgrim WC (1989) A SANS study of high pressure phase transitions in model biomembranes. Ber Bunsenges Phys Chem 93:708–717

    Article  CAS  Google Scholar 

  • Wong PTT, Mantsch HH (1985) Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study. Biochemistry 24:4091–4096

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Lewis RNAH, McElhaney RN (1997) Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J 72:779–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by Grant-in-Aid for Scientific Research (No. 26410016) from Japan Society for the Promotion of Science is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matsuki, H. (2015). How Do Membranes Respond to Pressure?. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_16

Download citation

Publish with us

Policies and ethics