Skip to main content

Discrete, Place-Defined Macrocolumns in Somatosensory Cortex: Lessons for Modular Organization of the Cerebral Cortex

  • Chapter
Recent Advances on the Modular Organization of the Cortex

Abstract

In 1957 Mountcastle introduced the concept of the cortical column as the vertical processing unit of the cerebral cortex. This idea, the “columnar hypothesis,” was based on the then prevailing view that the cortex is most richly interconnected in its vertical dimension (Lorente de No 1949) and on Mountcastle’s demonstration in single-unit recording experiments in cat (and later monkey; Powell and Mountcastle 1959) primary somatosensory cortex (SI) that neurons in ~0.5 mm wide vertical columns are activated by peripheral stimuli of the same submodality and have similar receptive fields (RFs). Mountcastle (1957) and Powell and Mountcastle (1959) also showed that their cortical columns – later named “macrocolumns” to distinguish them from single-cell-wide “minicolumns” (Mountcastle 1978) – can be separated from each other by abrupt boundaries, on the opposite sides of which neurons respond to stimuli of different submodalities and/or have prominently different RFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albus K (1975) A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat: I. The precision of the topography. Exp Brain Res 24:159–179

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu C, Colonnier M (1989) Number of neurons in individual laminae of areas 3b, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J Comp Neurol 279:228–234

    Article  CAS  PubMed  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  CAS  PubMed  Google Scholar 

  • Bosking WH, Crowley JC, Fitzpatrick D (2002) Spatial coding of position and orientation in primary visual cortex. Nat Neurosci 5:874–882

    Article  CAS  PubMed  Google Scholar 

  • Buzas P, Volgushev M, Eysel UT, Kisvarday ZF (2003) Independence of visuotopic representation and orientation map in the visual cortex of the cat. Eur J Neurosci 18:957–968

    Article  PubMed  Google Scholar 

  • Da Costa NM, Martin KAC (2010) Whose cortical column would that be? Front Neuroanat 4:16

    PubMed Central  PubMed  Google Scholar 

  • Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387:594–598

    Article  CAS  PubMed  Google Scholar 

  • Favorov OV (1991) Detection and characterization of the mosaic body representation in SI cortex. In: Franzen O, Westman J (eds) Information processing in the somatosensory system. Macmillan Press, London, pp 224–232

    Google Scholar 

  • Favorov OV, Diamond M (1990) Demonstration of discrete place-defined columns, segregates, in cat SI. J Comp Neurol 298:97–112

    Article  CAS  PubMed  Google Scholar 

  • Favorov OV, Kursun O (2011) Neocortical layer 4 as a pluripotent function linearizer. J Neurophysiol 105:1342–1360

    Article  PubMed  Google Scholar 

  • Favorov O, Whitsel BL (1988a) Spatial organization of the peripheral input to area 1 cell columns: I. The detection of “segregates”. Brain Res Rev 13:25–42

    Article  Google Scholar 

  • Favorov O, Whitsel BL (1988b) Spatial organization of the peripheral input to area 1 cell columns: II. The forelimb representation achieved by a mosaic of segregates. Brain Res Rev 13:43–56

    Article  Google Scholar 

  • Favorov OV, Diamond ME, Whitsel BL (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc Natl Acad Sci U S A 84:6606–6610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral Cortex. Vol. 1. Plenum, New York, pp 123–200

    Google Scholar 

  • Garraghty PE, Sur M (1990) Morphology of single intracellularly stained axons terminating in area 3b of macaque monkeys. J Comp Neurol 294:583–593

    Article  CAS  PubMed  Google Scholar 

  • Horton CH, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360:837–862

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–305

    Article  CAS  PubMed  Google Scholar 

  • Landry P, Deschenes M (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J Comp Neurol 199:345–371

    Article  CAS  PubMed  Google Scholar 

  • Landry P, Diadori P, Leclerc S, Dykes RW (1987) Morphological and electrophysiological characteristics of somatosensory thalamocortical axons studied with intra-axonal staining and recording in the cat. Exp Brain Res 65:317–330

    Article  CAS  PubMed  Google Scholar 

  • Lorente de No R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, 3rd edn. Oxford University Press, New York, pp 288–312

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:374–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module of the distributed system. In: Mountcastle VB, Edelman GM (eds) The mindful brain. MIT Press, Cambridge, MA, pp 7–50

    Google Scholar 

  • Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431:768–774

    Article  CAS  PubMed  Google Scholar 

  • Powell TPS, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162

    CAS  PubMed  Google Scholar 

  • Purves D, Riddle DR, La Mantia A-S (1992) Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci 15:362–368

    Article  CAS  PubMed  Google Scholar 

  • Raussel E, Jones EG (1995) Extent of intracortical arborization of thalamocortical axons as a determinant of representational plasticity in monkey somatic sensory cortex. J Neurosci 15:4270–4288

    Google Scholar 

  • Roe AW, Ts’o DY (1995) Visual topography in primate V2: multiple representation across functional stripes. J Neurosci 15:3689–3715

    CAS  PubMed  Google Scholar 

  • Swindale NV (1990) Is the cerebral cortex modular? Trends Neurosci 13:487–492

    Article  CAS  PubMed  Google Scholar 

  • Tommerdahl M, Favorov OV, Whitsel BL, Nakhle B, Gonchar YA (1993) Minicolumnar activation patterns in cat and monkey SI cortex. Cereb Cortex 3:399–411

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Farley BJ, Jin DZ, Sur M (2005) The coordinated mapping of visual space and response features in visual cortex. Neuron 47:267–280

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Favorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Favorov, O.V., Whitsel, B.L., Tommerdahl, M. (2015). Discrete, Place-Defined Macrocolumns in Somatosensory Cortex: Lessons for Modular Organization of the Cerebral Cortex. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_9

Download citation

Publish with us

Policies and ethics