Skip to main content

Abstract

The minicolumn has been defined as the smallest functional unit of the cortex with the widely-held view that there is a conservation of structure for this cortical processing unit. However, comparative data reveal significant differences among species in both the structure and composition of minicolumns. Here we review the available data on interspecific variation in minicolumn widths and the evidence in favor of phylogenetic variation in GABAergic interneurons, known to be a key component of the cortical microcircuit. Using data collated from the literature, we highlight the importance of variation in cortical column structure and build a framework towards further evolutionary explanations of minicolumn diversity. Although our preliminary analysis indicates that minicolumn width increases with increasing brain mass among anthropoid primates, this relationship is not constant when applied to other taxonomic orders. These findings highlight the need for further comparative analyses of minicolumn structure and their ecological, behavioral, and cognitive correlates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, DeFelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvárday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Muñoz A, Packer A, Petersen CCH, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    CAS  PubMed  Google Scholar 

  • Ballesteros-Yañez I, Munoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, DeFelipe J (2005) Double bouquet cell in the human cerebral cortex and a comparison with other mammals. J Comp Neurol 486:344–360

    Google Scholar 

  • Barinka F, Druga R, Marusic P, Krsek P, Zamecnik J (2009) Calretinin immunoreactivity in focal cortical dysplasias and in non-malformed epileptic cortex. Epilepsy Res. doi:10.1016/j.eplepsyres.2009.09.021

    PubMed  Google Scholar 

  • Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–355

    CAS  PubMed  Google Scholar 

  • Beasley C, Zhang Z, Patten I, Reynolds G (2002) Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 52:708–715

    CAS  PubMed  Google Scholar 

  • Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609:284–292

    CAS  PubMed  Google Scholar 

  • Beaulieu C, Kisvaraday Z, Somogyi P, Cuynader M, Cowey A (1992) Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex. Cereb Cortex 2:295–309

    CAS  PubMed  Google Scholar 

  • Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci U S A 97:5039–5043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buxhoeveden D, Casanova MF (2000) Comparative lateralization patterns in the language area of human, chimpanzee, and rhesus monkey brains. Laterality 5:315–330

    CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002a) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151

    PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002b) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001a) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358

    CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Roy E, Litaker M, Casanova MF (2001b) Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol 115:361–371

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193

    CAS  PubMed  Google Scholar 

  • Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 12:435–441

    PubMed  Google Scholar 

  • Casanova MF (2008) The significance of minicolumnar size variability in autism: a perspective from comparative anatomy. In: Zimmerman A (ed) Autism current theories and evidence, Current clinical neurology. The Human Press, Inc., Totowa, pp 349–360

    Google Scholar 

  • Casanova MF, Tilquist CR (2008) Encephalisation, emergent properties, and psychiatry: a minicolumnar perspective. Neuroscientist 14:101–118

    PubMed  Google Scholar 

  • Casanova MF, Trippe J (2009) Radial cytoarchitecture and patterns of cortical connectivity in autism. Phil Trans R Soc B 364:1433–1436

    PubMed Central  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Brown C (2002a) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17:692–695

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Switala AE, Roy E (2002b) Asperger’s syndrome and cortical neuropatholgy. J Child Neurol 17:142–145

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Switala AE, Roy E (2002c) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507

    PubMed  Google Scholar 

  • Casanova MF, de Zeeuw L, Switala A, Kreczmanski P, Korr H, Ulfig N, Heinsen H, Steinbusch HWM, Schmitz C (2005) Mean cell spacing abnormalities in the neocortex of patients with schizophrenia. Psychiatry Res 133:1–12

    PubMed  Google Scholar 

  • Casanova MF, Switala A, Trippe J, Fitzgerald M (2007) Comparative minicolumnar morphometry of three distinguished scientists. Autism 11:557–569

    PubMed  Google Scholar 

  • Casanova MF, Kreczmanski P, Trippe J, Switala A, Heinsen H, Steinbusch HWM, Schmitz C (2008) Neuronal distribution in the neocortex of schizophrenic patients. Psychiatry Res 158:267–277

    PubMed  Google Scholar 

  • Casanova MF, Trippe J, Tillquist C, Switala AE (2009) Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214:226–234

    PubMed Central  PubMed  Google Scholar 

  • Chance SA, Walker M, Crow TJ (2005) Reduced density of calbindin-immunoreactive interneurons in the planum temporale in schizophrenia. Brain Res 1046:32–37

    CAS  PubMed  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180

    CAS  PubMed  Google Scholar 

  • Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, Everall I (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 51:377–386

    CAS  PubMed  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London (Facsimile edition: Princeton, NJ: Princeton University Press, 1981)

    Google Scholar 

  • DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28k, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19

    CAS  PubMed  Google Scholar 

  • DeFelipe J (2002) Cortical interneurons: from Cajal to 2001. Prog Brain Res 136:215–238

    PubMed  Google Scholar 

  • DeFelipe J, Hendry SH, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673

    CAS  PubMed  Google Scholar 

  • DeFelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412:515–526

    Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    PubMed  Google Scholar 

  • DeFelipe J, Ballesteros-Yañez I, Inda MC, Munoz A (2006) Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. Prog Brain Res 154:15–32

    CAS  PubMed  Google Scholar 

  • DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S, Burkhalter A, Cauli B, Fairén A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, González-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, Kisvárday Z, Kubota Y, Lewis DA, Marín O, Markram H, McBain CJ, Meyer HS, Monyer H, Nelson SB, Rockland K, Rossier J, Rubenstein JL, Rudy B, Scanziani M, Shepherd GM, Sherwood CC, Staiger JF, Tamás G, Thomson A, Wang Y, Yuste R, Ascoli GA (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • del Rio MR, DeFelipe J (1997a) Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities. J Chem Neuroanat 13:243–251

    PubMed  Google Scholar 

  • del Rio MR, DeFelipe J (1997b) Synaptic connections of calretinin-immunoreactive neurons in the human neocortex. J Neurosci 17:5143–5154

    PubMed  Google Scholar 

  • Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166:102–115

    PubMed  Google Scholar 

  • Escobar MI, Pimenta H, Caviness VS Jr, Jacobson M, Crandall JE, Kosik KS (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 17:975–989

    CAS  PubMed  Google Scholar 

  • Eyles DW, McGrath JJ, Reynolds GP (2002) Neuronal calcium-binding proteins and schizophrenia. Schizophr Res 57:27–34

    CAS  PubMed  Google Scholar 

  • Favorov OV, Diamond ME (1990) Demonstration of discrete place-defined columns-segregates-in the cat SI. J Comp Neurol 298:97–112

    CAS  PubMed  Google Scholar 

  • Feldman ML, Peters A (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55–76

    CAS  PubMed  Google Scholar 

  • Ferrer I, Tuñon T, Serrano MT, Casas R, Alcantara S, Zujar MJ, Rivera RM (1993) Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 56:257–261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleischauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwickl Gesch 136:213–223

    Google Scholar 

  • Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364:609–636

    CAS  PubMed  Google Scholar 

  • Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499

    CAS  PubMed  Google Scholar 

  • Glezer II, Morgane PJ (1990) Ultrastructure of synapses and golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale [published erratum appears in Brain Res. Bull. (1990) 24:639–640]. Brain Res Bull 24: 401–427

    Google Scholar 

  • Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181–188

    CAS  PubMed  Google Scholar 

  • Glezer II, Hof PR, Leranth C, Morgane PJ (1993) Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249–272

    CAS  PubMed  Google Scholar 

  • Glezer II, Hof PR, Morgane PJ (1998) Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 15:203–237

    Google Scholar 

  • Gomez-Tortosa E, Sanders JL, Newell K, Hyman BT (2001) Cortical neurons expressing calcium binding proteins are spared in dementia with Lewy bodies. Acta Neuropathol (Berl) 101:36–42

    CAS  Google Scholar 

  • Goodall J (1986) The chimpanzees of gombe: patterns of behavior. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gustafsson L (1997) Inadequate cortical feature maps: a neural circuit theory of autism. Biol Psychiatry 42:1138–1147

    Google Scholar 

  • Hare B, Melis AP, Woods V, Hastings S, Wrangham R (2007) Tolerance allows bonobos to outperform chimpanzees on a cooperative task. Curr Biol 17:619–623

    CAS  PubMed  Google Scholar 

  • Hendry SHC (1987) Recent advances in understanding the intrinsic circuitry of the cerebral cortex. In: Wise SP (ed) Higher brain functions: recent explorations of the brain’s emergent properties. Wiley, New York, pp 241–283

    Google Scholar 

  • Hendry SHC, Schwark HD, Jones EG, Yan J (1987) Number and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lowson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76:467–472

    CAS  PubMed  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci U S A 105:12593–12598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287A:1153–1163

    CAS  Google Scholar 

  • Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer's disease. J Neuropathol Exp Neurol 50:451–462

    CAS  PubMed  Google Scholar 

  • Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301

    CAS  PubMed  Google Scholar 

  • Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148

    CAS  PubMed  Google Scholar 

  • Hof PR, Nimchinsky EA, Buée-Scherrer V, Buée L, Nasrallah J, Hottinger AF, Purohit DP, Loerzel AJ, Steele JC, Delacourte A, Bouras C, Morrison JH, Perl DP (1994) Amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol 88:397–404

    CAS  PubMed  Google Scholar 

  • Hof PR, Bogaert YE, Rosenthal RE, Fiskum G (1996) Distribution of neuronal populations containing neurofilament protein and calcium-binding proteins in the canine neocortex: regional analysis and cell typology. J Chem Neuroanat 11:81–98

    CAS  PubMed  Google Scholar 

  • Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    CAS  PubMed  Google Scholar 

  • Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300–310

    CAS  PubMed  Google Scholar 

  • Huxley TH (1863) Evidence as to man’s place in nature. Williams and Norgate, London [1959, Ann Arbor, University of Michigan]

    Google Scholar 

  • Kaas JH, Nelson RJ, Sur M, Merzenich MM (1981) Organisation of somatosensory cortex in primates. In: Schmitt O, Worden FG, Adelman G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge MA, pp 237–261

    Google Scholar 

  • Kohn A, Pinheiro A, Tommerdahl MA, Whitsel BL (1997) Optical imaging in vitro provides evidence for the minicolumnar nature of cortical response. Neuroreport 8:3513–3518

    CAS  PubMed  Google Scholar 

  • Lawrence YA, Kemper TL, Bauman ML, Blatt GJ (2010) Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol Scand. 121(2):99–108

    Google Scholar 

  • Livingstone MS, Hubel DH (1984) Specificity of intrinsic connections in primate connections of primary visual cortex. J Neurosci 4:2830–2835

    CAS  PubMed  Google Scholar 

  • Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81:293–338

    PubMed  Google Scholar 

  • Manger PR, Spocter MA, Patzke N (2013) The evolutions of large brain size in mammals: the over 700 gram club quartet. Brain Behav Evol 82(1):68–78

    PubMed  Google Scholar 

  • Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, Van der Gucht E, Whitehead H (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev 83:417–440

    PubMed  Google Scholar 

  • Morgane PJ, Glezer II, Jacobs MS (1988) Visual cortex of the dolphin: an image analysis study. J Comp Neurol 273:3–25

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    PubMed  Google Scholar 

  • Mountcastle VB, Berman AL, Davies P (1955) Topographic organization and modality representation in the first somatic area of cat’s cerebral cortex by method of single unit analysis. Am J Physiol 183:464

    Google Scholar 

  • Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Barneston L (1996) Clustering of pathological features in Alzheimer’s disease: clinical and neuroanatomical aspects. Dementia 7:121–127

    CAS  PubMed  Google Scholar 

  • Nishiyama E, Ohwada J, Iwamoto N, Arai H (1993) Selective loss of calbindin D28K-immunoreactive neurons in the cortical layer II in brains of Alzheimer’s disease: a morphometric study. Neurosci Lett 163:223–226

    CAS  PubMed  Google Scholar 

  • Orban GA (1984) Studies in brain function, vol II, Neuronal operation in the visual cortex. Springer, Berlin

    Google Scholar 

  • Palagi E (2006) Social play in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes): implications for natural social systems and interindividual relationships. Am J Phys Anthropol 129:418–426

    PubMed  Google Scholar 

  • Parish AR, de Waal FB (2000) The other “closest living relative”. How bonobos (Pan paniscus) challenge traditional assumptions about females, dominance, intra- and intersexual interactions, and hominid evolution. Ann NY Acad Sci 907:97–113

    CAS  PubMed  Google Scholar 

  • Petanjek Z, Kostovic I, Esclapez M (2009) Primate-specific origins and migration of cortical GABAergic neurons. Front Neuroanat. 27:3–26

    Google Scholar 

  • Peters A, Kara D (1987) The neuronal composition of area 17 in rat visual cortex. The organization of pyramidal cells. IV. J Comp Neurol 260:573–590

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C (1997) The organization of double bouquet cells in monkey striate cortex. J Neurocytol 26:779–797

    CAS  PubMed  Google Scholar 

  • Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268

    CAS  PubMed  Google Scholar 

  • Peters A, Yilmaz E (1993) Neuronal organization in area 17 of cat visual cortex. Cereb Cortex 3:49–68

    CAS  PubMed  Google Scholar 

  • Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100:2348–2360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preuss TM (2001) The discovery of cerebral diversity: an unwelcomed scientific revolution. In: Falk D, Gibson KR (eds) Evolutionary anatomy of primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164

    Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506

    CAS  PubMed  Google Scholar 

  • Pugliese M, Carrasco JL, Geloso MC, Mascort J, Michetti F, Mahy N (2004) γ-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. J Neurosci Res 77:913–920

    CAS  PubMed  Google Scholar 

  • Raghanti MA, Spocter MA, Butti C, Hof PR, Sherwood CC (2010) A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Front Neuroanat 4:3

    PubMed Central  PubMed  Google Scholar 

  • Rakic P (2008) Confusing cortical columns. Proc Natl Acad Sci U S A 105:12099–12100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Beasley CL (2001) GABAergic neuronal subtypes in the human frontal cortex–development and deficits in schizophrenia. J Chem Neuroanat 22:95–100

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Zhang ZJ, Beasley CL (2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res Bull 55:579–584

    CAS  PubMed  Google Scholar 

  • Reynolds G, Abdul-Monim Z, Neill J, Zhang Z (2004) Calcium binding protein markers of GABA deficits in schizophrenia- postmortem studies and animal models. Neurotox Res 6:57–61

    PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrenns TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    CAS  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in the structure of the neocortex. Brain 103:221–244

    CAS  PubMed  Google Scholar 

  • Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, Nazazato Y, Mikuni M (2008) Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28:143–150

    PubMed  Google Scholar 

  • Schenker NM, Buxhoeveden D, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neurol 510:117–128

    PubMed  Google Scholar 

  • Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. J Comp Neurol 351:441–452

    CAS  PubMed  Google Scholar 

  • Seldon HL (1981) Structure of human auditory cortex I: cytoarchitectonics and dendritic distributions. Brain Res 229:277–294

    CAS  PubMed  Google Scholar 

  • Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AJ, Preuss TM, Hof PR (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195

    PubMed  Google Scholar 

  • Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009) Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213:301–328

    PubMed  Google Scholar 

  • Skoglund TS, Pascher R, Berthold CH (1996) Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci Lett 208:97–100

    CAS  PubMed  Google Scholar 

  • Tommerdahl M, Favorov OV, Whitsel BL, Nakhle B, Gonchar YA (1993) Minicolumnar activation patterns in cat and monkey S1 cortex. Cereb Cortex 3:399–411

    CAS  PubMed  Google Scholar 

  • Von Bonin G, Mehler WR (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9

    Google Scholar 

  • White EL, Peters A (1993) Cortical modules in the posteromedial barrel subfield (Sml) of the mouse. J Comp Neurol 334:86–96

    CAS  PubMed  Google Scholar 

  • Wobber V, Wrangham R, Hare B (2010) Bonobos exhibit delayed development of social behavior and cognition relative to chimpanzees. Curr Biol 20:226–230

    CAS  PubMed  Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–1015

    CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal Gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci U S A 95:5341–5346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wrangham RW (1999) The evolution of coalitionary killing. Yearb Phys Anthropol 42:1–30

    Google Scholar 

  • Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kroner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178–1186

    CAS  PubMed  Google Scholar 

  • Zamecnik J, Krsek P, Druga R, Marusic P, Benes V, Tichy M, Komarek V (2006) Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias. Brain Res Bull 68:474–481

    CAS  PubMed  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55:1–10

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cheryl D. Stimpson for technical assistance. This work was supported by the National Science Foundation (BCS-0515484, BCS-0549117, BCS-0827531, BCS-0550209, BCS-0827546, DGE-0801634), the National Institutes of Health (NS042867), the Wenner-Gren Foundation for Anthropological Research, and the James S. McDonnell Foundation (22002078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Spocter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spocter, M.A., Raghanti, M.A., Butti, C., Hof, P.R., Sherwood, C.C. (2015). The Minicolumn in Comparative Context. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_5

Download citation

Publish with us

Policies and ethics