Skip to main content

Abstract

Brain-machine interfaces (BMIs) establish unidirectional and bidirectional communication channels between the brain and assistive devices, such as wheelchairs, limb prostheses and computers. BMI technologies can also link areas within the brain and even individual brains. BMI approach holds promise to provide effective treatment for a range of neurological conditions. Moreover, BMIs can be utilized to augment brain function in healthy individuals. Here we consider three broadly defined BMI types: motor, sensory and cognitive. For these BMI types, both noninvasive and invasive methods have been employed for neural recordings and stimulation. While original BMIs were implemented at the level of brain macrocircuits, a recent trend was to develop BMIs that utilize neuronal microcircuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190, C1-3

    PubMed Central  PubMed  Google Scholar 

  • Bach-y-Rita P, Kercel W (2003) Sensory substitution and the human-machine interface. Trends Cogn Sci 7:541–546

    PubMed  Google Scholar 

  • Barton JJ (2011) Disorder of higher visual function. Curr Opin Neurol 24:1–5

    PubMed  Google Scholar 

  • Berger TW, Ahuja A, Courellis SH, Deadwyler SA, Erinjippurath G, Gerhardt GA, Gholmieh G, Granacki JJ, Hampson R, Hsaio MC, LaCoss J, Marmarelis VZ, Nasiatka P, Srinivasan V, Song D, Tanguay AR, Wills J (2005) Restoring lost cognitive function. IEEE Eng Med Biol Mag 24:30–44

    PubMed  Google Scholar 

  • Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017

    PubMed Central  PubMed  Google Scholar 

  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    CAS  PubMed  Google Scholar 

  • Birbaumer N, Murguialday AR, Cohen L (2008) Brain-computer interface in paralysis. Curr Opin Neurol 21:634–638

    PubMed  Google Scholar 

  • Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(5):935–951

    PubMed  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1(2), E42

    PubMed Central  PubMed  Google Scholar 

  • Casanova MF (2013) Canonical circuits of the cerebral cortex as enablers of neuroprosthetics. Research Topic: “Augmentation of brain function: facts, fiction and controversy”, Lebedev MA, Opris I and Casanova MF (eds). Front Syst Neurosci 7.77. doi:10.3389/fnsys.2013.00080

  • Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    CAS  PubMed  Google Scholar 

  • Chase SM, Kass RE, Schwartz AB (2012) Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex. J Neurophysiol 108:624–644

    PubMed Central  PubMed  Google Scholar 

  • Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, Seetharaman K, Hoellinger T, Dan B, Dutoit T, Sylos LF, Lacquaniti F, Ivanenko Y (2012) From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plast 2012:375148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381:557–564

    PubMed Central  PubMed  Google Scholar 

  • Constantinople CM, Bruno RM (2013b) Deep cortical layers are activated directly from thalamus. Science 340(6140):1591–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cordo PJ, Gurfinkel VS (2004) Motor coordination can be fully understood only by studying complex movements. Prog Brain Res 143:29–38

    PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dennett DC (1992) Consciousness explained. Back Bay Books, New York, 528 pp. [This book contains a description of the pioneering demonstration of a brain-machine interface by Grey Walter]

    Google Scholar 

  • Dobelle WH, Mladejovsky MG, Girvin JP (1974) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444

    CAS  PubMed  Google Scholar 

  • Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evarts EV (1973) Motor cortex reflexes associated with learned movement. Science 179:501–503

    CAS  PubMed  Google Scholar 

  • Farah MJ (2002) Emerging ethical issues in neuroscience. Nat Neurosci 5:1123–1129

    CAS  PubMed  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    CAS  PubMed  Google Scholar 

  • Fatourechi M, Bashashati A, Ward RK, Birch GE (2007) EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol 118:480–494

    PubMed  Google Scholar 

  • Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB (1998) Recent tests of the equilibrium-point hypothesis (lambda model). Mot Control 2:189–205

    CAS  Google Scholar 

  • Fernandes RA, Diniz B, Ribeiro R, Humayun M (2012) Artificial vision through neuronal stimulation. Neurosci Lett 519:122–128

    CAS  PubMed  Google Scholar 

  • Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958

    CAS  PubMed  Google Scholar 

  • Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MA (2007) Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 27:5593–5602

    CAS  PubMed  Google Scholar 

  • Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA (2009) Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front Integr Neurosci 3:3

    PubMed Central  PubMed  Google Scholar 

  • Frank K (1968) Some approaches to the technical problem of chronic excitation of peripheral nerve. Ann Otol Rhinol Laryngol 77:761–771

    CAS  PubMed  Google Scholar 

  • Fuster JM, Bressler SL (2012) Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci 16(4):207–218

    PubMed Central  PubMed  Google Scholar 

  • Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán JR (2008) A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119:2159–2169

    PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236

    CAS  PubMed  Google Scholar 

  • Guertin PA (2009) The mammalian central pattern generator for locomotion. Brain Res Rev 62:45–56

    PubMed  Google Scholar 

  • Hampson RE, Gerhardt GA, Marmarelis V, Song D, Opris I, Santos L, Berger TW, Deadwyler SA (2012) Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 9(5):056012

    PubMed Central  PubMed  Google Scholar 

  • Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10(6):066013. doi:10.1088/1741-2560/10/6/066013

    PubMed Central  PubMed  Google Scholar 

  • Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haykin S (2001) Adaptive filter theory, 4th edn. Prentice Hall, Upper Saddle River, 936 pp

    Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    CAS  PubMed  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (2005) Brain and visual perception: the story of a 25-year collaboration. Oxford University Press, Oxford, 744 pp

    Google Scholar 

  • Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from multiple cortical spike trains. Science 170:758–762

    CAS  PubMed  Google Scholar 

  • Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MA (2013) A brain-machine interface enables bimanual arm movements in monkeys. Sci Transl Med 5:210ra154

    PubMed Central  PubMed  Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330

    CAS  PubMed  Google Scholar 

  • Jones LA (2011) Tactile communication systems optimizing the display of information. Prog Brain Res 192:113–128

    PubMed  Google Scholar 

  • Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr Opin Neurobiol 7:849–859

    CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    CAS  PubMed  Google Scholar 

  • Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9:1707–1711

    CAS  PubMed  Google Scholar 

  • Kim SP, Sanchez JC, Rao YN, Erdogmus D, Carmena JM, Lebedev MA, Nicolelis MA, Principe JC (2006) A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces. J Neural Eng 3(2):145–161

    PubMed  Google Scholar 

  • Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29:536–546

    CAS  PubMed  Google Scholar 

  • Lebedev MA, Carmena JM, O’Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA (2005) Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J Neurosci 25:4681–4693

    CAS  PubMed  Google Scholar 

  • Li Z, O’Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, Nicolelis MA (2009) Unscented Kalman filter for brain-machine interfaces. PLoS ONE 4:e6243

    PubMed Central  PubMed  Google Scholar 

  • Lilly JC (1956) Distribution of ‘motor’ functions in the cerebral cortex in the conscious, intact monkey. Science 124:937

    Google Scholar 

  • Lin CT, Chang CJ, Lin BS, Hung SH, Chao CF, Wang IJ (2010) A real-time wireless brain–computer interface system for drowsiness detection. IEEE Trans Biomed Circuits Syst 4(4):214–222

    Google Scholar 

  • McFarland DJ, Krusienski DJ, Wolpaw JR (2006) Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. Prog Brain Res 159:411–419

    PubMed  Google Scholar 

  • Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A (2007) An MEG-based brain–computer interface (BCI). Neuroimage 36:581–593

    PubMed Central  PubMed  Google Scholar 

  • Millan JR, Renkens F, Mouriño J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51:1026–1033

    Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. A comprehensive review of the literature indicating the modular architecture of the cortex. Brain 120(4):701–722

    PubMed  Google Scholar 

  • Mountcastle VB (2005) The sensory hand: neural mechanisms of somatic sensation. Harvard University Press, Cambridge, MA, 640 pp

    Google Scholar 

  • Muller-Putz GR, Pfurtscheller G (2008) Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 55:361–364

    PubMed  Google Scholar 

  • Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors (Basel) 12:1211–1279

    Google Scholar 

  • Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–407

    CAS  PubMed  Google Scholar 

  • Nicolelis MA (2011) Beyond boundaries: the new neuroscience of connecting brains with machines – and how It will change our lives. Times Books, New York, 354 pp

    Google Scholar 

  • Nicolelis MA, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10:530–540

    CAS  PubMed  Google Scholar 

  • Nurmikko AV, Donoghue JP, Hochberg LR, Patterson WR, Song YK, Bull CW, Borton DA, Laiwalla F, Park S, Ming Y, Aceros J (2010) Listening to brain microcircuits for interfacing with external world-progress in wireless implantable microelectronic neuroengineering devices. Proc IEEE Inst Electr Electron Eng 98(3):375–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3:20. doi:10.3389/neuro.07.020.2009

    PubMed Central  PubMed  Google Scholar 

  • O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MA (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479(7372):228–231. doi:10.1038/nature10489

    PubMed Central  PubMed  Google Scholar 

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Research topic: “Augmentation of brain function: facts, fiction and controversy”, Lebedev MA, Opris I and Casanova MF (eds). Front Syst Neurosci 7:80. doi:10.3389/fnsys.2013.00080

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(7):1863–1875

    PubMed  Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhard GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23(6):1507–1521

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012a) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012b) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 6:88

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Santos LM, Song D, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA (2014) Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods. S0165-0270(14)00197-6

  • Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36

    CAS  PubMed  Google Scholar 

  • Pohlmeyer EA, Oby ER, Perreault EJ, Solla SA, Kilgore KL, Kirsch RF, Miller LE (2009) Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLoS ONE 4:e5924

    PubMed Central  PubMed  Google Scholar 

  • Presacco A, Forrester LW, Contreras-Vidal JL (2012) Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. IEEE Trans Neural Syst Rehabil Eng 20:212–219

    PubMed Central  PubMed  Google Scholar 

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    CAS  PubMed  Google Scholar 

  • Romo R, Hernández A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26:273–278

    CAS  PubMed  Google Scholar 

  • Romo R, Hernández A, Salinas E, Brody CD, Zainos A, Lemus L, de Lafuente V, Luna R (2002) From sensation to action. Behav Brain Res 135(1–2):105–118

    PubMed  Google Scholar 

  • Sampaio E, Maris S, Bach-y-Rita P (2001) Brain plasticity: ‘visual’ acuity of blind persons via the tongue. Brain Res 908:204–207

    CAS  PubMed  Google Scholar 

  • Schmidt EM (1980) Single neuron recording from motor cortex as a possible source of signals for control of external devices. Ann Biomed Eng 8:339–349

    CAS  PubMed  Google Scholar 

  • Schott GD (1993) Penfield’s homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry 56:329–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205–220

    CAS  PubMed  Google Scholar 

  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11:449–455

    PubMed  Google Scholar 

  • Shannon RV (2012) Advances in auditory prostheses. Curr Opin Neurol 25:61–66

    PubMed Central  PubMed  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, Liverpool, 411 pp

    Google Scholar 

  • Sitaram R, Caria A, Birbaumer N (2009) Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Netw 22:1320–1328

    PubMed  Google Scholar 

  • Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2009b) Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Netw 22(9):1340–1351. doi:10.1016/j.neunet.2009.05.004

    PubMed Central  PubMed  Google Scholar 

  • Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, Shenoy K (2012) A recurrent neural network for closed-loop intracortical brain-machine interface decoders. J Neural Eng 9:026027

    PubMed Central  PubMed  Google Scholar 

  • Tangermann M, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, Müller KR (2009) Playing pinball with non-invasive BCI. Adv Neural Inf Process Syst 21:1641–1648

    Google Scholar 

  • Tavella M, Leeb R, Rupp R, Millán JdR (2010) Towards natural non-invasive hand neuroprostheses for daily living. In: Proceedings of the 32nd annual international conference of the IEEE engineering in medicine and biology society, Buenos Aires

    Google Scholar 

  • Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    CAS  PubMed  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13(1):5–14

    Google Scholar 

  • Van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2(3):265–283

    Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    CAS  PubMed  Google Scholar 

  • Vialatte FB, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90:418–438

    PubMed  Google Scholar 

  • Vlek RJ, Steines D, Szibbo D, Kübler A, Schneider MJ, Haselager P, Nijboer F (2012) Ethical issues in brain-computer interface research, development, and dissemination. J Neurol Phys Ther 36:94–99

    PubMed  Google Scholar 

  • Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365

    CAS  PubMed  Google Scholar 

  • Wilson BS, Dorman MF (2008) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242:3–21

    PubMed Central  PubMed  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    CAS  PubMed  Google Scholar 

  • Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A 101:17849–17854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zacksenhouse M, Lebedev MA, Carmena JM, O’Doherty JE, Henriquez C, Nicolelis MA (2007) Cortical modulations increase in early sessions with brain-machine interface. PLoS ONE 2:e619

    PubMed Central  PubMed  Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Lebedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lebedev, M., Opris, I. (2015). Brain-Machine Interfaces: From Macro- to Microcircuits. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_21

Download citation

Publish with us

Policies and ethics