Skip to main content

The Function of Cortical Microcircuits: Insights from Biomorphic Ceramic-Based Microelectrode Arrays

  • Chapter
  • 1024 Accesses

Abstract

Technological advancements in the manufacturing, design and use of biomorphic ceramic-based multi-electrode arrays have made it possible to study the function of the brain’s microcircuits. Here we examine the literature on the fabrication, composition, design and use of biomorphic Microelectrode Arrays (MEAs) that were instrumental in understanding the function of cortical microcircuits. Recent findings highlight the importance of such MEAs for the study of cortical modularity from a broad range of perspectives such as electrophysiology, in vivo electrochemistry, optogenetics, and neuroprosthetics. In particular, biomorphic MEAs are a crucial milestone in the advancement of cortical modularity and have been used to simultaneously record neural activity from supra- and infra-granular layers along in adjacent cortical minicolumns. We have strived to develop MEAs that: (1) can be mass produced such that other laboratories can easily utilize the same recording technology, (2) are designed to be biomorphic to study multiple brain regions and neurotransmitters in various in vivo systems, (3) control online signal flow through multiple minicolumns and layers, and (4) can be used in the future in neuroprosthetics for patients with neurological and psychiatric disorders.

Author contributed equally with all other contributors

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams RN (1990) In vivo electrochemical measurements in the CNS. Prog Neurobiol 35:297–311

    CAS  PubMed  Google Scholar 

  • Alivisatos AP et al (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3):1850–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bargon J (ed) (1984) Methods and materials in microelectronic technology, IBM research symposia series. Plenum Publishing Corp, New York

    Google Scholar 

  • Bement SL, Wise KD, Anderson DJ, Najafi K, Drake KL (1986) Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng 33(2):230–241

    CAS  PubMed  Google Scholar 

  • Berger TW, Chapin JK, Gerhardt GA, McFarland DJ, Principe JC, Soussou WV (2007) WTEC panel report on international assessment of research and development in brain–computer interfaces. WTEC, Baltimore

    Google Scholar 

  • Berger TW, Chapin JK, Gerhardt GA, McFarland DJ, Principe JC, Soussou WV, Taylor DM, Tresco PA (2008) The biotic-abiotic interface brain-computer interfaces: an international assessment of research and development trends, 1st edn. Springer, Berlin, pp 31–46

    Google Scholar 

  • Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017

    PubMed Central  PubMed  Google Scholar 

  • Berger TW, Song D, Chan RHM, Shin D, Marmarelis VZ, Hampson RE, Sweatt AJ (2012) Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. Pulse IEEE 3(5):17–22

    Google Scholar 

  • Bernsterin JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    Google Scholar 

  • Borland LM, Shi GY, Yang H et al (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146:149–158

    CAS  PubMed  Google Scholar 

  • Bungay PM, Newton-Vinson P, Isele W et al (2003) Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 86:932–946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burmeister JJ, Gerhardt GA (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal Chem 73(5):1037–1042

    CAS  PubMed  Google Scholar 

  • Burmeister JJ, Gerhardt GA (2003) Ceramic-based multisite microelectrode arrays for in vivo electrochemical recordings of glutamate and other neurochemicals. TrAC-Trends Anal Chem 22:498–502

    CAS  Google Scholar 

  • Burmeister JJ, Moxon K, Gerhardt G (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    CAS  PubMed  Google Scholar 

  • Burmeister J, Pomerleau F, Palmer M et al (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 119:163–171

    CAS  PubMed  Google Scholar 

  • Burmeister JJ, Pomerleau F, Huettl P et al (2008) Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens Bioelectron 23:1382–1389

    CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(5):935–951

    PubMed  Google Scholar 

  • Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38(8):758–768

    CAS  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Brown C (2002a) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17(9):692–695

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9(6):496–507

    PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Switala AE (2011) Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn. Front Neuroanat 5:66

    PubMed Central  PubMed  Google Scholar 

  • Chapin JK, Loeb GE, Woodward DJ (1980) A simple technique for determination of footfall patterns of animals during treadmill locomotion. J Neurosci Methods 2(1):97–102

    CAS  PubMed  Google Scholar 

  • Cheer JF, Heien ML, Garris PA et al (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102:19150–19155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Matsumoto N, Hu Y et al (2002) Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Anal Chem 74:368–372

    CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin Lonny R, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clapp-Lilly KL, Roberts RC, Duffy LK et al (1999) An Ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90:129–142

    CAS  PubMed  Google Scholar 

  • Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly from thalamus. Science 340(6140):1591–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526(Pt 1):143–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  • Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29:620–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA (2006) Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 96:1626–1635

    CAS  PubMed  Google Scholar 

  • de Kock CP, Bruno RM, Spors H, Sakmann B (2007) Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol 581(Pt 1):139–154

    PubMed Central  PubMed  Google Scholar 

  • Deadwyler SA, Hampson RE, Song D, Chan RHM, Opris I, Gerhardt GA, Marmaarelis V, Berger TW (2013) Donor/recipient enhancement of memory in rat hippocampus. Research Topic: “Augmentation of brain function: facts, fiction and controversy”, Lebedev MA, Opris I, Casanova MF (eds). Front Syst Neurosci. 7:120. doi:10.3389/fnsys.2013.00120

  • Delgado JM (1961) Cerebral and behavioral effects on the monkey of CAPP. Arch Int Pharmacodyn Ther 1961(133):163–172

    Google Scholar 

  • Derdikman D, Yu C, Haidarliu S, Bagdasarian K, Arieli A, Ahissar E (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26(37):9538–9547

    CAS  PubMed  Google Scholar 

  • Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon BM, Lowry JP, O’Neill RD (2002) Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neurosci Methods 119:135–142

    CAS  PubMed  Google Scholar 

  • Drew KL, Pehek EA, Rasley BT et al (2004) Sampling glutamate and GABA with microdialysis: suggestions on how to get the dialysis membrane closer to the synapse. J Neurosci Methods 140:127–131

    CAS  PubMed  Google Scholar 

  • Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC (2011) Multiplexed high density electrophysiology with nanofabricated neural probes. PLoS One 6:e26204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer EK (1957) Dehydration therapy of cerebral decompensation phenomena in cerebral injuries. Med Klin (Munich) 52(36):1592–1593

    CAS  Google Scholar 

  • Friedemann MN, Robinson SW, Gerhardt GA (1996) O-phenylenediamine-modified carbon-fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    CAS  PubMed  Google Scholar 

  • Gerhardt GA, Burmeister JJ (2000) Voltammetry in vivo for chemical analysis of the nervous system. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  • Gerhardt GA, Burmeister JJ (2006) Neurochemical arrays. In: Grimes CA (ed) Encyclopedia of sensors. American Scientific Publishers, California

    Google Scholar 

  • Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395

    CAS  PubMed  Google Scholar 

  • González-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb Cortex 10(1):82–92

    PubMed  Google Scholar 

  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27(52):14231–14238

    CAS  PubMed  Google Scholar 

  • Hampson RE, Coates TD Jr, Gerhardt G,A, Deadwyler SA (2004) Ceramic-based micro-electrode neuronal recordings in the rat and monkey. Proc Annu Int Conf IEEE Eng Med Biol Soc (EMBS) 25:3700–3703

    Google Scholar 

  • Hampson RE, Song D, Chan RH, Sweatt AJ, Riley MR, Gerhardt GA, Shin DC, Marmarelis VZ (2012a) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Trans Neural Syst Rehabil Eng 20(23):184–197

    PubMed Central  PubMed  Google Scholar 

  • Hampson RE, Gerhardt GA, Marmarelis V, Song D, Opris I, Santos L, Berger TW, Deadwyler SA (2012b) Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 9(5):056012

    PubMed Central  PubMed  Google Scholar 

  • Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ (2013a) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10(6):066013

    PubMed Central  PubMed  Google Scholar 

  • Hampson RE, Fuqua JL, Huettl P, Opris I, Song D, Shin D, Marmaarelis V, Berger TW, Gerhardt GA, Deadwyler SA (2013b) Conformal ceramic electrodes that record glutamate release and corresponding neural activity in primate prefrontal cortex. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, Osaka, Japan, pp 5954–5957

    Google Scholar 

  • Han X (2012) In vivo application of optogenetics for neural circuit analysis. ACS Chem Neurosci 3(8):577–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen BJ, Chelaru MI, Dragoi V (2012) Correlated variability in laminar cortical circuits. Neuron 76(3):590–602

    CAS  PubMed  Google Scholar 

  • Hascup KN, Rutherford EC, Quintero JE et al (2006) Second-by-second measures of L-glutamate and other neurotransmitters using enzyme-based microelectrode arrays. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press, Florida

    Google Scholar 

  • Hascup KN, Hascup ER, Pomerleau F et al (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324:725–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hascup ER, af Bjerken S, Hascup KN et al (2009) Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 1291:12–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hascup ER, Hascup KN, Stephens M et al (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115:1608–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hebert MA, van Horne CG, Hoffer BJ et al (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190

    CAS  PubMed  Google Scholar 

  • Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102(29):10023–10028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess WR (1932) Beiträge zur Physiologie des Hirnstammes. I. Die Methodik der lokalisierten Reizung und Ausschaltung subkortikaler Hirnabschnitte. Thieme, Leipzig

    Google Scholar 

  • Hoffman AF, Lupica CR, Gerhardt GA (1998) Dopamine transporter activity in the substantia nigra and striatum assessed by high-speed chronoamperometric recordings in brain slices. J Pharmacol Exp Ther 287:487–496

    CAS  PubMed  Google Scholar 

  • Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Lustig C, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33:8742–8752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Mitchell KM, Albahadily FN et al (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res 659:117–125

    CAS  PubMed  Google Scholar 

  • Jung MW, Qin Y, McNaughton BL, Barnes CA (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8(5):437–450

    CAS  PubMed  Google Scholar 

  • Kim SP, Sanchez JC, Rao YN, Erdogmus D, Carmena JM, Lebedev MA, Nicolelis MA, Principe JC (2006) A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces. J Neural Eng 3(2):145–161

    PubMed  Google Scholar 

  • Kinney GA, Overstreet LS, Slater NT (1997) Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J Neurophysiol 78:1320–1333

    CAS  PubMed  Google Scholar 

  • Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue–a new neurophysiological measurement. Brain Res 55(1):209–213

    CAS  PubMed  Google Scholar 

  • Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, Pellicciari R, Schwarcz R, Bruno JP (2010) Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 169:1848–1859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    CAS  PubMed  Google Scholar 

  • Krupa DJ, Wiest MC, Shuler MG, Laubach M, Nicolelis MA (2004) Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304(5679):1989–1992

    CAS  PubMed  Google Scholar 

  • Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of grain tissue with electrochemical microsensors. Anal Chem 71:5093–5100

    CAS  PubMed  Google Scholar 

  • Lowry JP, Miele M, O’Neill RD et al (1998) An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods 79:65–74

    CAS  PubMed  Google Scholar 

  • Mahan MY, Georgopoulos AP (2013) Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circuits 7:92

    PubMed Central  PubMed  Google Scholar 

  • Marsden CA, Joseph MH, Kruk ZL et al (1988) In vivo voltammetry–present electrodes and methods. Neuroscience 25:389–400

    CAS  PubMed  Google Scholar 

  • Marshel JH, Deisseroth K (2013) Genetically encoded voltage sensor goes live. Nat Biotechnol 31(11):994–995

    CAS  PubMed  Google Scholar 

  • Martin KF, Marsden CA (1987) In vivo electrochemistry – principles and applications. Life Sci 41:865–868

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Chen X, Wilson GS (2002) Fundamental studies of glucose oxidase deposition on a Pt Electrode. Anal Chem 74:362–367

    CAS  PubMed  Google Scholar 

  • McCreery RL, Dreiling R, Adams RN (1974) Voltammetry in brain tissue: the fate of injected 6-hydroxydopamine. Brain Res 73(1):15–21

    CAS  PubMed  Google Scholar 

  • Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmission in real time. J Pharm Biomed Anal 19:33–46

    CAS  PubMed  Google Scholar 

  • Mo J, Schroeder CE, Ding M (2011) Attentional modulation of alpha oscillations in macaque inferotemporal cortex. J Neurosci 31(3):878–882

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    PubMed  Google Scholar 

  • Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK (2004) Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans Biomed Eng 51(4):647–656

    PubMed  Google Scholar 

  • Nickell J, Pomerleau F, Allen J, Gerhardt GA (2005) Age-related changes in the dynamics of potassium-evoked L-glutamate release in the striatum of Fischer 344 rats. J Neural Transm 112:87–96

    CAS  PubMed  Google Scholar 

  • Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006a) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34–42

    CAS  PubMed  Google Scholar 

  • Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006b) Evaluation of hydrogel-coated glutamate microsensors. Anal Chem 78:3366–3378

    CAS  PubMed  Google Scholar 

  • Onifer SM, Quintero JE, Gerhardt GA (2012) Cutaneous and electrically evoked glutamate signaling in the adult rat somatosensory system. J Neurosci Methods 208:146–154

    Google Scholar 

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Research topic: “Augmentation of brain function: facts, fiction and controversy”, Lebedev MA, Opris I and Casanova MF (eds), Front Syst Neurosci 7:80. doi:10.3389/fnsys.2013.00080

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(Pt 7):1863–1875. doi:10.1093/brain/awt359

  • Opris I, Barborica A, Ferrera VP (2005) Microstimulation of dorsolateral prefrontal cortex biases saccade target selection. J Cogn Neurosci 17(6):893–904

    PubMed  Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23(6):1507–1521

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012a) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012b) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 6:88

    PubMed Central  PubMed  Google Scholar 

  • Opris I, Santos LM, Song D, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285

    PubMed Central  PubMed  Google Scholar 

  • Parikh V, Sarter M (2006) Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J Neurochem 97:488–503

    CAS  PubMed  Google Scholar 

  • Parikh V, Sarter M (2008) Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann N Y Acad Sci 1129:225–235

    CAS  PubMed  Google Scholar 

  • Parikh V, Pomerleau F, Huettl P et al (2004) Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 20:1545–1554

    PubMed  Google Scholar 

  • Parikh V, Kozak R, Martinez V et al (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Philips PE, Robinson DL, Stuber GD, Carelli RM, Wightman RM (2003) Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol Med 79:443–464

    Google Scholar 

  • Phillips PE, Wightman RM (2004) Extrasynaptic dopamine and phasic neuronal activity. Nat Neurosci 7(3):199

    CAS  PubMed  Google Scholar 

  • Photolithography (2001) Texas engineering extension service (ed), Texas

    Google Scholar 

  • Pomerleau F, Day BK, Huettl P et al (2003) Real time in vivo measures of L-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann N Y Acad Sci 1003:454–457

    CAS  PubMed  Google Scholar 

  • Quintero JE, Day BK, Zhang Z, Grondin R, Stephens ML, Huettl P, Pomerleau F, Gash DM, Gerhardt GA (2007) Amperometric measures of age-related changes in glutamate regulation in the cortex of rhesus monkeys. Exp Neurol 208:238–246

    CAS  PubMed  Google Scholar 

  • Ratclif R, Cherian A, Segraves M (2003) A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J Neurophysiol 90(3):1392–1407

    Google Scholar 

  • Robinson TW, Johnson EO (1967) Further studies on reference electrodes. Electroencephalogr Clin Neurophysiol 23(3):292

    CAS  PubMed  Google Scholar 

  • Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC (2010) Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci 31(12):2279–2291

    PubMed Central  PubMed  Google Scholar 

  • Rutherford EC, Pomerleau F, Huettl P et al (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102:712–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai Y, Takahashi S (2006) Dynamic synchrony of firing in the monkey prefrontal cortex during working memory tasks. J Neurosci 26:10141–10153

    CAS  PubMed  Google Scholar 

  • Salcman M, Bak MJ (1973) Design, fabrication, and in vivo behavior of chronic recording intracortical microelectrodes. IEEE Trans Biomed Eng 20(4):253–260

    CAS  PubMed  Google Scholar 

  • Shepherd G, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, Oxford

    Google Scholar 

  • Song D, Chan RHM, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2009) Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Netw 22(9):1340–1351

    PubMed Central  PubMed  Google Scholar 

  • Stamford JA, Palij P, Davidson C et al (1993) Simultaneous “real-time” electrochemical and electrophysiological recording in brain slices with a single carbon-fibre microelectrode. J Neurosci Methods 50:279–290

    CAS  PubMed  Google Scholar 

  • Stephens ML, Pomerleau F, Huettl P et al (2010) Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype. J Neurosci Methods 185:264–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephens ML, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA (2011) Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol Aging 32:811–820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suaud-Chagny MF, Cespuglio R, Rivot JP, Buda M, Gonon F (1993) High sensitivity measurement of brain catechols and indoles in vivo using electrochemically treated carbon-fiber electrodes. J Neurosci Methods 48:241–250

    CAS  PubMed  Google Scholar 

  • Suyatin DB, Wallman L, Thelin J, Prinz CN, Jorntell H et al (2013) Nanowire-based electrode for acute in vivo neural recordings in the brain. PLoS One 8:e56673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447

    CAS  PubMed  Google Scholar 

  • Talauliker PM, Price DA, Burmeister JJ, Nagari S, Quintero JE, Pomerleau F, Huettl P, Hastings JT, Gerhardt GA (2011) Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis. J Neurosci Methods 198:222–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian FM, Gourine AV, Huckstepp RTR, Dale N (2009) A microelectrode biosensor for real time monitoring of L-glutamate release. Anal Chim Acta 645:86–91

    CAS  PubMed  Google Scholar 

  • Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261

    CAS  PubMed  Google Scholar 

  • Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    CAS  PubMed  Google Scholar 

  • van Horne C, Hoffer BJ, Stromberg I et al (1992) Clearance and diffusion of locally applied dopamine in normal and 6-hydroxydopamine-lesioned rat striatum. J Pharmacol Exp Ther 263:1285–1292

    PubMed  Google Scholar 

  • Viventi J, Kim D-H, Vigeland L, Frechette ES, Blanco JA, Kim Y-S, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011(14):1599–1605

    Google Scholar 

  • Wassum KM, Tolosa VM, Wang J, Walker E, Monbouquette HG, Maidment NT (2008) Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo. Sensors (Basel) 8(8):5023–5036

    CAS  Google Scholar 

  • Westerink RH (2004) Exocytosis: using amperometry to study presynaptic mechanisms of neurotoxicity. Neurotoxicology 25:461–470

    CAS  PubMed  Google Scholar 

  • Wightman RM, Strope E, Plotsky PM, Adams RN (1976) Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature 262(5564):145–146

    CAS  PubMed  Google Scholar 

  • Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in Rat striatum. Neuroscience 39:1–16

    CAS  PubMed  Google Scholar 

  • Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    CAS  PubMed  Google Scholar 

  • Wire Bond (1998) Texas engineering extension service (ed), Texas

    Google Scholar 

  • Wise RA (1976) Moveable electrode for chronic brain stimulation in the rat. Physiol Behav 16(1):105–106

    CAS  PubMed  Google Scholar 

  • Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 22(3):212–219

    CAS  PubMed  Google Scholar 

  • Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17(3):238–247

    CAS  PubMed  Google Scholar 

  • Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684–692

    CAS  PubMed  Google Scholar 

  • Zesiewicz T, Shaw J, Allison K, Staffetti J, Okun M, Sullivan K (2013) Update on treatment of essential tremor. Curr Treat Options Neurol 15:410–423

    PubMed  Google Scholar 

  • Zhang M, Alloway KD (2006) Intercolumnar synchronization of neuronal activity in rat barrel cortex during patterned airjet stimulation: a laminar analysis. Exp Brain Res 169:311–325

    PubMed  Google Scholar 

  • Zhang H, Lin SC, Nicolelis MA (2009) Acquiring local field potential information from amperometric neurochemical recordings. J Neurosci Methods 179:191–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Lin SC, Nicolelis MA (2010) Spatiotemporal coupling between hippocampal acetycholine release and theta oscillations in vivo. J Neurosci 30:13431–13440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou N, Rungta RL, Malik A, Han H, Wu DC, Macvicar BA (2013) Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression. J Cereb Blood Flow Metab 33:1582–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zorzos AN, Scholvin J, Boyden ES, Fonstad CG (2012) Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 37:4841–4843

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg A. Gerhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gerhardt, G.A. et al. (2015). The Function of Cortical Microcircuits: Insights from Biomorphic Ceramic-Based Microelectrode Arrays. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_17

Download citation

Publish with us

Policies and ethics