Skip to main content

Clinical Applications of Electrophysiological Approaches Based on Cortical Modularity in Autism

  • Chapter
Recent Advances on the Modular Organization of the Cortex

Abstract

Autism spectrum disorder (ASD) consists of a set of pervasive developmental problems marked by measurable deficits in social interaction and communication, often coupled with specific and repetitive patterns of behavior. Featured restrictions in the capability to communicate and remain attentive can directly relate to the individual’s ability to interact with others within societal norms. Comparing ASD subjects to neurotypical (NT) controls, and other developmental disorders such attention deficit/hyperactivity disorder (ADHD), previous investigations had shown that evoked electroencephalographic (EEG) gamma oscillations and event-related potentials (ERPs) to sensory stimuli do display certain aberrations in latency or amplitude in the ASD individuals. To investigate the aforementioned phenomena the series of studies by our group employed EEG recording technology while subjects participated in several oddball-paradigm reaction time tests. The paper reports on the differences in behavioral reactions as well as variances in amplitude and latency of ERP in autistic individuals and age-matched matched NT controls and children with ADHD. Subjects were evaluated using various ERP components as well as power of EEG gamma oscillations recorded at fronto-central and parietal sites. Findings of our studies suggest that the irregularities arise from deficits in the perception, integration and cognitive processing of sensory inputs. Previous research investigating the neuropathology of autism has identified abnormalities in the structure, number and activity of the cortical minicolumns. The minicolumns of ASD individuals appear in greater number coupled with increased neuronal density due to a reduction in the volume of peripheral neuropil space and neuronal cell bodies. Such a cortical and cellular arrangement favors the formation of short intralobular connections between neurons at the expense of longer interlobular fibers. Our studies propose that aberrations in sensory processing and functional cortical binding, as evidenced by EEG recordings related to the tasks, further reflect the underlying abnormalities of minicolumns in ASD individuals. Thus, the results of our studies suggest that dysfunction of sensory information processing by way of minicolumn irregularity may in turn lead to symptoms commonly associated with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (DSM-IV-TR). American Psychiatric Association, Washington, DC

    Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(5):889–905

    PubMed  Google Scholar 

  • Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126

    CAS  PubMed  Google Scholar 

  • Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a ‘theory of mind’? Cognition 21:37–46

    CAS  PubMed  Google Scholar 

  • Baron-Cohen S, Wheelwright S, Griffin R, Lawson J, Hill J (2002) The exact mind: empathizing and systemizing in autism spectrum conditions. In: Goswami U (ed) Handbook of cognitive development. Blackwell, Oxford, pp 491–508

    Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neuroscience 8(1):45–56

    CAS  Google Scholar 

  • Baruth JM, Casanova MF, El-Baz A, Horrell T, Mathai G, Sears L, Sokhadze E (2010a) Low-frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma oscillations in autism spectrum disorder (ASD). J Neurother 14(3):179–194

    PubMed Central  PubMed  Google Scholar 

  • Baruth JM, Casanova M, Sears L, Sokhadze E (2010b) Early-stage visual processing abnormalities in autism spectrum disorder (ASD). Transl Neurosci 1:177–187

    PubMed Central  PubMed  Google Scholar 

  • Baruth J, Williams E, Sokhadze E, El-Baz A, Sears L, Casanova MF (2011) Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Sci Dig J AutismOne 1(1):52–57

    Google Scholar 

  • Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism, 2nd edn. John Hopkins University Press, Baltimore, pp 121–135

    Google Scholar 

  • Belmonte MK (2000) Abnormal attention in autism shown by steady-state visual evoked potentials. Autism 4:269–285

    Google Scholar 

  • Belmonte MK, Yurgelun-Todd DA (2003a) Functional anatomy of impaired selective attention and compensatory processing in autism. Cogn Brain Res 17:651–664

    Google Scholar 

  • Belmonte MK, Yurgelun-Todd DA (2003b) Anatomic dissociation of selective and suppressive processes in visual attention. NeuroImage 19:180–189

    PubMed  Google Scholar 

  • Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004a) Autism and abnormal development of brain connectivity. J Neurosci 24(42):9228–9231

    CAS  PubMed  Google Scholar 

  • Belmonte MK, Cook EH, Anderson GM, Rubenstein JL, Greenhough WT, Beckel-Mitchener A, Courchesne E, Boulanger LM, Powell SB, Levitt PR, Perry EK, Jiang YH, DeLorey TM, Tierney E (2004b) Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 9(7):646–663

    CAS  PubMed  Google Scholar 

  • Bomba MD, Pang EW (2004) Cortical auditory evoked potentials in autism: a review. Int J Psychophysiol 53(3):161–169

    PubMed  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1):47–60

    CAS  PubMed  Google Scholar 

  • Brock J, Brown CC, Boucher J, Rippon G (2002) The temporal binding deficit hypothesis of autism. Dev Psychopathol 14(2):209–224

    PubMed  Google Scholar 

  • Brown C (2005) EEG in autism: is there just too much going on in there? In: Casanova MF (ed) Recent developments in autism research. Nova, New York, pp 109–126

    Google Scholar 

  • Brown C, Gruber T, Boucher J, Rippon G, Brock J (2005) Gamma abnormalities during perception of illusory figures in autism. Cortex 41:364–376

    PubMed  Google Scholar 

  • Bruneau N, Roux S, Adrien JL, Bathelemy C (1999) Auditory associative cortex dysfunction in children with autism: evidence from late auditory evoked potentials (N 1 wave- T Complex). Clin Neurophysiol 110:1927–1934

    CAS  PubMed  Google Scholar 

  • Burack JA (1994) Selective attention deficits in persons with autism: preliminary evidence for inefficient attentional lens. J Abnorm Psychol 103:515–543

    Google Scholar 

  • Cantor DS, Thatcher RW, Hrybyk M, Kaye H (1986) Computerized EEG analysis of autistic children. J Autism Dev Disord 16:169–187

    CAS  PubMed  Google Scholar 

  • Casanova MF (2005) Minicolumnar pathology in autism. In: Casanova MF (ed) Recent developments in autism research. Nova Biomedical Books, New York, pp 133–144

    Google Scholar 

  • Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 12(5):435–441

    PubMed  Google Scholar 

  • Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433

    PubMed  Google Scholar 

  • Casanova MF (2010) Cortical organization: anatomical findings based on systems theory. Transl Neurosci 1(1):62–71

    PubMed Central  PubMed  Google Scholar 

  • Casanova MF, Switala AE (2005) Minicolumnar morphometry: computerized image analysis. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical Books, New York, pp 161–180

    Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002a) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol 17(7):515–521

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507

    PubMed  Google Scholar 

  • Casanova MF, van Kooten I, van Engeland H, Heinsen H, Steinbursch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006a) Minicolumnar abnormalities in autism II. Neuronal size and number. Acta Neuropathol 112(3):287–303

    PubMed  Google Scholar 

  • Casanova MF, van Kooten I, Switala AE, van England H, Heinsen H, Steinbuch HW, Hof PR, Schmitz C (2006b) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6(3–4):127–133

    Google Scholar 

  • Casanova MF, Baruth J, El-Baz AS, Sokhadze GE, Hensley M, Sokhadze EM (2013) Evoked and induced gamma-frequency oscillation in autism. In: Casanova MF, El-Baz AS, Suri JS (eds) Imaging the brain in autism. Springer, New York, pp 87–106

    Google Scholar 

  • Casey BJ, Gordon CT, Mannheim GB, Rumsey JM (1993) Dysfunctional attention in autistic savants. J Clin Exp Neuropsychol 15(6):933–946

    CAS  PubMed  Google Scholar 

  • Charman T (2008) Autism spectrum disorders. Psychiatry 7:331–334

    Google Scholar 

  • Ciesielski KT, Knoght JE, Prince RJ, Harris RJ, Handmaker SD (1995) Event-related potentials in cross-modal divided attention in autism. Neuropsychologia 33:225–246

    CAS  PubMed  Google Scholar 

  • Coles MG (1989) Modern mini-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26(3):251–269

    CAS  PubMed  Google Scholar 

  • Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2–3):153–170

    PubMed  Google Scholar 

  • Courchesne E, Lincoln AJ, Kilman BA, Galambos R (1985) Event-related brain potential correlates of the processing of novel visual and auditory information in autism. J Autism Dev Disord 15(1):55–76

    CAS  PubMed  Google Scholar 

  • Courchesne E, Lincoln AJ, Yeung-Courchesne R, Elmasian R, Grillon C (1989) Pathophysiologic findings in nonretarded autism and receptive developmental disorder. J Autism Dev Disord 19(1):1–17

    CAS  PubMed  Google Scholar 

  • Cui RQ, Huter D, Egkher A, Lang W, Lindinger G, Deecke L (2000) High resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement. Exp Brain Res 134(1):49–57

    CAS  PubMed  Google Scholar 

  • Dawson G, Finley C, Phillips S, Galpert L, Lewy A (1988) Reduced P 3 amplitude of the event-related brain potential: its relationship to language ability in autism. J Autism Dev Disord 18(4):493–504

    CAS  PubMed  Google Scholar 

  • Dawson G, Klinger LG, Panagiotides H, Lewy A, Catelloe P (1995) Subgroups of autistic children based on social behavior display distinct patterns of brain activity. J Abnorm Child Psychol 23(5):569–583

    CAS  PubMed  Google Scholar 

  • Del Rio MR, DeFelipe J (1997) Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities. J Chem Anat 13(4):243–251

    Google Scholar 

  • Eimer M (1998) The lateralized readiness potential as an on-line measure of central response activation processes. Behav Res Methods Instrum Comput 30:146–156

    Google Scholar 

  • Engel AK, Konig P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15(6):218–226

    CAS  PubMed  Google Scholar 

  • Ferri R, Elia M, Agarwal N, Lanuzza B, Musumeci SA, Pennisi G (2003) The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clin Neurophysiol 114:1671–1680

    PubMed  Google Scholar 

  • Frith U (1989) Autism: explaining the enigma. Blackwell, Oxford

    Google Scholar 

  • Frith U, Happé F (1994) Autism: beyond “theory of mind”. Cognition 50(1–3):115–132

    CAS  PubMed  Google Scholar 

  • Gomes E, Pedroso FS, Wagner MB (2008) Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono 20(4):279–284

    PubMed  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    CAS  PubMed  Google Scholar 

  • Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, Johnson MH (2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12(12):2697–2700

    CAS  PubMed  Google Scholar 

  • Gross E, El-Baz A, Sokhadze G, Sears L, Casanova M, Sokhadze E (2012) Induced EEG gamma oscillation alignment improves differentiation between autism and ADHD group responses in a facial categorization task. J Neurother 16(2):78–91

    PubMed Central  PubMed  Google Scholar 

  • Grothe B, Klump GM (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10(4):467–473

    CAS  PubMed  Google Scholar 

  • Gruber T, Muller MM (2005) Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cereb Cortex 15(1):109–116

    PubMed  Google Scholar 

  • Gruber T, Muller MM, Keil A, Elbert T (1999) Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 110(12):2074–2085

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Tayama M, Miyazaki M, Sakurama N, Yoshimoto T, Murakawa K, Kuroda Y (1992) Reduced brainstem size in children with autism. Brain and Development 14(2):94–97

    CAS  PubMed  Google Scholar 

  • Herrmann CS, Knight RT (2001) Mechanisms of human attention: event related potentials and oscillations. Neurosci Biobehav Rev 25(6):465–476

    CAS  PubMed  Google Scholar 

  • Herrmann CS, Mecklinger A (2000) Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features. Int J Psychophysiol 38(3):265–281

    CAS  PubMed  Google Scholar 

  • Herrmann CS, Mecklinger A, Pfeifer E (1999) Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110(4):636–642

    CAS  PubMed  Google Scholar 

  • Hillyard SA, Mangun GR, Woldorff MG, Luck SJ (1995) Neural mechanisms mediating selective attention. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Hofman MA (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol 27(1):28–40

    CAS  PubMed  Google Scholar 

  • Holcomb PJ, Ackerman PT, Dykman RA (1985) Cognitive event-related brain potentials in children with attention and reading deficits. Psychophysiology 22(6):656–667

    CAS  PubMed  Google Scholar 

  • Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13(12):1369–1374

    PubMed  Google Scholar 

  • Just MA, Cherkassky V, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sequence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127(8):1811–1821

    PubMed  Google Scholar 

  • Kaiser J (2003) Induced gamma-band activity and human brain function. Neuroscientist 9(6):475–484

    PubMed  Google Scholar 

  • Kaiser J, Hertrich I, Ackermann H, Mathiak K, Lutzenberger W (2005) Hearing lips: gamma-band activity during audiovisual speech perception. Cereb Cortex 15(5):646–653

    PubMed  Google Scholar 

  • Kana RK, Libero LE, Moore MS (2011) Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorder. Phys Life Rev 8(4):410–437

    PubMed  Google Scholar 

  • Kanizsa G (1976) Subjective contours. Sci Am 234(4):48–52

    CAS  PubMed  Google Scholar 

  • Keil A, Muller MM, Ray WJ, Gruber T, Elbert T (1999) Human gamma band activity and perception of a gestalt. J Neurosci 19(16):7152–7161

    CAS  PubMed  Google Scholar 

  • Kemner C, Verbaten MN, Cuperus JM, Camfferman G, Van Engeland H (1994) Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalogr Clin Neurophysiol 92(3):225–237

    CAS  PubMed  Google Scholar 

  • Kemner C, Verbaten MN, Cuperus JM, Camfferman G, Van Engeland H (1995) Auditory event- related potentials in autistic children and three different control groups. Biol Psychiatry 38(3):150–165

    CAS  PubMed  Google Scholar 

  • Kemner C, van der Gaag RJ, Verbaten M, van Engeland H (1999) ERP differences among subtypes of pervasive developmental disorders. Biol Psychiatry 46(6):781–789

    CAS  PubMed  Google Scholar 

  • Kenemans JL, Kok A, Smulders FT (1993) Event-related potentials to conjunctions of spatial nd orientation as a function of stimulus parameters and response requirements. Electroencephalogr Clin Neurophysiol 88(1):51–63

    CAS  PubMed  Google Scholar 

  • Khalfa S, Bruneau N, Rogé B, Georgieff N, Veuillet E, Adrien JL, Barthelemy C, Collet L (2004) Increased perception of loudness in autism. Hear Res 198(1–2):87–92

    PubMed  Google Scholar 

  • Kiser RM, Sokhadze G, Gross E, El-Baz A, Sokhadze E, Casanova M (2012) Selective attention and audiovisual integration in children with autism. Appl Psychophysiol Biofeedback 37:307

    Google Scholar 

  • Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24(3):810–821

    PubMed  Google Scholar 

  • Kozloski J, Hamzei-Sichani F, Yust R (2001) Stereotyped position of local synaptic targets in neocortex. Science 293(5531):868–872

    CAS  PubMed  Google Scholar 

  • Lainhart JE (2006) Advances in autism neuroimaging research for the clinician and genetics. Am J Med Genet Semin Med Genet 142C(1):33–39

    Google Scholar 

  • Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 41(1):57–78

    PubMed  Google Scholar 

  • Leuthold H, Jentzsch I (2001) Neural correlates of advance movement preparation: a dipole source analysis approach. Brain Res Cogn Brain Res 12(2):207–224

    CAS  PubMed  Google Scholar 

  • Leuthold H, Sommer W, Ulrich R (2004) Preparing for action: inferences from CNV and LRP. J Psychophysiol 18(2–3):77–88

    Google Scholar 

  • Lincoln AJ, Courchesne E, Harms L, Allen M (1993) Contextual probability evaluation in autistic, receptive developmental disorder and control children: event-related potential evidence. J Autism Dev Disord 23(1):37–58

    CAS  PubMed  Google Scholar 

  • Marco EJ, Hinkley LB, Hill SS, Nagarajan SS (2011) Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res 69(5):48–54

    Google Scholar 

  • Minshew NJ, Goldstein G, Siegel DJ (1997) Neuropsychologic functioning in autism: profile of a complex information processing disorder. J Int Neuropsychol Soc 3(4):303–316

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722

    PubMed  Google Scholar 

  • Mountcastle VB (2003) Introduction. Computation in cortical columns. Cereb Cortex 13(1):2–4

    PubMed  Google Scholar 

  • O’Neill M, Jones RS (1997) Sensory-perceptual abnormalities in autism: a case for more research? J Autism Dev Disord 27(3):283–293

    PubMed  Google Scholar 

  • O’Riordan MA, Plaisted KC, Driver J, Baron-Cohen S (2001) Superior visual search in autism. J Exp Psychol Hum Percept Perform 27(3):719–730

    PubMed  Google Scholar 

  • Oades RD, Walker MK, Geffen LB, Stern LM (1988) Event-related potentials in autistic and healthy children on an auditory choice reaction time task. Int J Psychophysiol 6(1):25–37

    CAS  PubMed  Google Scholar 

  • Ong WY, Garey LJ (1990) Pyramidal neurons are immunopositive for peptides, but not GABA, in the temporal cortex of the macaque monkey (Macaca fascicularis). Brain Res 533(1):24–41

    CAS  PubMed  Google Scholar 

  • Ozonoff S, Pennington BF, Rogers SJ (1991) Executive function deficits in high-functioning autistic individuals: relationship to theory of mind. J Child Psychol Psychiatry Allied Discip 32(7):1081–1105

    CAS  Google Scholar 

  • Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127(12):2572–2583

    PubMed  Google Scholar 

  • Pavlova M, Birbaumer N, Sokolov A (2006) Attentional modulation of cortical neuromagnetic gamma response to biological movement. Cereb Cortex 16(3):321–327

    PubMed  Google Scholar 

  • Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306(1):1–23

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365(2):232–255

    CAS  PubMed  Google Scholar 

  • Plaisted K, Saksida L, Alcantara JI, Weisblatt E (2003) Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception. Philos Trans R Soc Lond B Biol Sci 358(1430):375–386

    PubMed Central  PubMed  Google Scholar 

  • Polich J (2003) Theoretical overview of P3a and P3b. In: Polich J (ed) Detection of change: event-related potential and fMRI findings. Kluwer Academic Press, Boston, pp 83–98

    Google Scholar 

  • Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38(1):3–19

    CAS  PubMed  Google Scholar 

  • Porjesz B, Almasy L, Edenberg HJ, Wang K, Chorlian DB, Foroud T, Goate A, Rice JP, O’Connor SJ, Rohrbaugh J, Kuperman S, Bauer LO, Crowe RR, Schuckit MA, Hesselbrock V, Conneally PM, Tischfield JA, Li TK, Reich T, Begleiter H (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci U S A 99(6):3729–3733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Praamstra GF, Schmitz F, Freund HJ, Schnitzler A (1999) Magneto-encephalographic correlates of the laterized readiness potential. Brain Res Cogn Brain Res 8(2):77–85

    CAS  PubMed  Google Scholar 

  • Pritchard W, Sokhadze E, Houlihan M (2004) Effects of nicotine and smoking on event-related potentials. Nicotine Tob Res 6(6):961–984

    CAS  PubMed  Google Scholar 

  • Rakic P (1975) Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Buchwald NA, Brazier M (eds) Brain mechanisms in mental retardation. Academic, New York, pp 3–40

    Google Scholar 

  • Rakic P (1995) Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci U S A 92(25):11323–11327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratey JJ, Johnson C (1997) Shadow syndromes: the mild forms of major mental disorders that sabotage us. Bantam Books, New York

    Google Scholar 

  • Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol 63(2):164–172

    PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370(2):247–261

    CAS  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Croog VJ (1997) Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol 11(2–3):417–422

    CAS  PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433

    CAS  PubMed  Google Scholar 

  • Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2(5):255–267

    CAS  PubMed  Google Scholar 

  • Schipul SE, Keller TA, Just MA (2011) Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 5:10. doi:10.3389/fnsys.2011.00010.eCollection 2011

    PubMed Central  PubMed  Google Scholar 

  • Seldon HL (1981a) Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res 229(2):277–294

    CAS  PubMed  Google Scholar 

  • Seldon HL (1981b) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229(2):295–310

    CAS  PubMed  Google Scholar 

  • Seri S, Cerquiglini A, Pisani F, Curatolo P (1999) Autism in tuberous sclerosis: evoked potential evidence for a deficit in auditory sensory processing. Clin Neurophysiol 110(10):1825–1830

    CAS  PubMed  Google Scholar 

  • Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57(11):1033–1038

    CAS  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations. Neuron 24(1):49–65

    CAS  PubMed  Google Scholar 

  • Sokhadze E, Baruth J, Tasman A, Sears L, Mathai G, El-Baz A, Casanova M (2009a) Event-related potential study of novelty processing abnormalities in autism. Appl Psychophysiol Biofeedback 34(1):37–51

    PubMed  Google Scholar 

  • Sokhadze EM, Singh S, El-Baz A, Baruth J, Mathai G, Sears L, Casanova M (2009b) Effects of a low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39(4):619–634

    PubMed  Google Scholar 

  • Sokhadze E, Baruth J, Tasman A, Mansoor M, Ramaswamy R, Sears L, Mathai G, El-Baz A, Casanova MF (2010a) Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Appl Psychophysiol Biofeedback 35(2):147–161

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze E, Baruth J, El-Baz A, Horrell T, Sokhadze G, Carroll T, Tasman A, Sears L, Casanova M (2010b) Impaired error monitoring and correction function in autism. J Neurother 14(2):79–95

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze EM, Baruth J, Tasman A, Casanova MF (2013) Event-related potential studies of cognitive processing abnormalities in autism. In: Casanova MF, El-Baz A, Suri JS (eds) Imaging the brain in autism. Springer, New York, pp 61–86

    Google Scholar 

  • Sokhadze E, Edelson S, Casanova MF, Sokhadze E (2014) Motor response preparation deficits in a cued spatial attention task in autism. Psychophysiology 41(Supplement):S61

    Google Scholar 

  • Tallon-Baudry C (2003) Oscillatory synchrony and human visual cognition. J Physiol Paris 97(2–3):355–363

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16(13):4240–4249

    CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Henaff MA, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15(5):654–662

    PubMed  Google Scholar 

  • Tannan V, Holden JK, Zhang Z, Baranek GT, Tommerdahl MA (2008) Perceptual metrics of individuals with autism provide evidence for disinhibition. Autism Res Int Soc Autism Res 1(4):223–230

    Google Scholar 

  • Townsend J, Courchesne E, Egaas B (1996) Slowed orienting of covert visual-spatial attention in autism: specific deficits associated with cerebellar and parietal abnormality. Dev Psychopathol 8:503–584

    Google Scholar 

  • Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry T, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19(13):5632–5643

    CAS  PubMed  Google Scholar 

  • Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E (2001) Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Brain Res Cogn Brain Res 11(1):127–145

    CAS  PubMed  Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JG (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383(6601):621–624

    CAS  PubMed  Google Scholar 

  • Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 2(6):352–358

    Google Scholar 

  • Viebahn C (1990) Correlation between differences in the structure of dendrite bundles and cytoarchitectonic patterns in the cerebral cortex of the rabbit. J Hirnforsch 31(5):645–652

    CAS  PubMed  Google Scholar 

  • Von Bonin G, Mehler WR (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27(1):1–9

    Google Scholar 

  • Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E (2005) Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry 57(9):991–998

    PubMed  Google Scholar 

  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30(44):14595–14609

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate M. Sokhadze Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sokhadze, E.M., Sears, L., El-Baz, A.S., Tasman, A., Casanova, M.F. (2015). Clinical Applications of Electrophysiological Approaches Based on Cortical Modularity in Autism. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_14

Download citation

Publish with us

Policies and ethics