Skip to main content
  • 1067 Accesses

Abstract

The organization of the cerebral cortex is centered around a modular construct. The smallest module capable of information processing is the minicolumn. Recent studies on minicolumnar morphometry using either pyramidal cell arrays or the gray level index (GLI) suggest distinct abnormalities of this structure in several psychiatric conditions including schizophrenia, dyslexia, and autism. More specifically, minicolumns in autism as compared to controls seem thinner and more numerous. An increased number of minicolumns indicates the supernumerary division of periventricular germinal cells. A reduction in size of pyramidal cell somas within affected minicolumns suggests a bias towards shorter corticocortical connectivity. Compartmentalization of the minicolumn indicates that the majority of the deficit is found within the peripheral neuropil space. This compartment includes, among other things, many of the inhibitory elements of the cerebral cortex and provides the so-called “shower curtain of inhibition” to the minicolumn. Laminae studies indicate that in autism the peripheral neuropil defect extends the width of the cerebral cortex. A possible explanation to the above described minicolumnar abnormalities is the heterochronic division of germinal cells. Neuroblasts generated from heterochronic divisions of germinal cells can give rise to heterotopias and dysplastic cortical lesions. Once the radially migrating neuroblasts (future pyramidal cells) reach the cortex they develop asynchronously from tangentially dividing neuronal elements (interneurons). The resultant excitatory/inhibitory imbalance may provide for seizures and sensorimotor abnormalities

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avino TA, Hustler JJ (2010) Abnormal cell patterning at the cortical gray–white matter boundary in autism spectrum disorders. Brain Res 1360:138–146

    Article  CAS  PubMed  Google Scholar 

  • Baruth JM, Casanova MF, El-Baz A, Horrell T, Mathai G, Sears L, Sokhadze E (2010) Low frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma frequency oscillations in autism spectrum disorder (ASD). J Neurother 14(3):179–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1987) Limbic involvement in a second case of early infantile autism. Neurology 37(Suppl 1):147

    Google Scholar 

  • Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism, 2nd edn. Johns Hopkins University Press, Baltimore, pp 121–135

    Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumnar hypothesis in neurosciences. Brain 125:935–951

    Article  PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57(6):349–358

    Article  CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Semendeferi K, Buckwalter J, Schneker N, Switzer R, Courchesne E (2006) Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 32:483–491

    Article  CAS  PubMed  Google Scholar 

  • Casanova MF (2004) White matter volume increase and minicolumns in autism. Ann Neurol 56(3):453

    Article  PubMed  Google Scholar 

  • Casanova MF (2008) The significance of minicolumnar size variability in autism: a perspective from comparative anatomy (ch. 16). In: Zimmerman A (ed) Autism: current theories and evidence. Current clinical neurology. The Humana Press, Totowa, pp 349–360

    Google Scholar 

  • Casanova MF (2013) The minicolumnopathy of autism spectrum disorders (ch. 3.7). In: Buxbaum JD, Hof PR (eds) The neuroscience of autism spectrum disorders. Academic, Oxford, pp 327–333

    Google Scholar 

  • Casanova MF, Switala AE (2005) Minicolumnar morphometry: computerized Image analysis. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical, New York, pp 161–180

    Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002a) Minicolumnar pathology in autism. Neurology 58:428–432

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol 17:515–521

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Brown C (2002c) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17:692–695

    Article  PubMed  Google Scholar 

  • Casanova MF, Araque J, Giedd J, Rumsey JM (2004) Reduced brain size and gyrification in the brains of dyslexic patients. J Child Neurol 19:275–281

    Article  PubMed  Google Scholar 

  • Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006a) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303

    Article  PubMed  Google Scholar 

  • Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Schmitz C (2006b) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133

    Article  Google Scholar 

  • Casanova MF, Trippe J, Tillquist C, Switala AE (2009) Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214(2):226–234

    Article  PubMed Central  PubMed  Google Scholar 

  • Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, Soliman A, Allison-McNutt A, Switala AE (2013) Focal cortical displasias in autism spectrum disorders. Acta Neuropathol Commun 1:67. doi:10.1186/2051-5960-1-67

  • DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122(10):1807–1822

    Article  PubMed  Google Scholar 

  • Favorov OV, Kelly DG (1994a) Minicolumnar organization within somatosensory cortical segregates, I: development of afferent connections. Cereb Cortex 4(4):408–427

    Article  CAS  PubMed  Google Scholar 

  • Favorov OV, Kelly DG (1994b) Minicolumnar organization within somatosensory cortical segregates, II: emergent functional properties. Cereb Cortex 4(4):428–442

    Article  CAS  PubMed  Google Scholar 

  • Grice SJ, Spratling MW, Karmiloff-Smith A et al (2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12:2697–2700

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson L (1997) Inadequate cortical feature maps: a neural circuit theory of autism. Biol Psychiatry 42:1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55(4):530–540

    Article  PubMed  Google Scholar 

  • Hofman MA (1985) Neuronal correlates of corticalization in mammals: a theory. J Theor Biol 112(1):77–95

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (2001) Brain evolution in hominids: are we at the end of the road? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 113–127

    Chapter  Google Scholar 

  • Hoffman RE, Cavus I (2002) Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatr 159:1093–1102

    Article  PubMed  Google Scholar 

  • Hustler JJ, Love T, Zhang H (2007) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457

    Article  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127(8):1811–1821

    Article  PubMed  Google Scholar 

  • Keita L, Mottron L, Dawson M, Bertone A (2011) Atypical lateral connectivity: a neural basis for altered visuospatial processing in autism. Biol Psychiatry 70(9):806–811

    Article  PubMed  Google Scholar 

  • Kemper TL, Bauman ML (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, Oxford

    Google Scholar 

  • Macdonald KD, Fifkova E, Jones MS, Barth DS (1998) Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in the cortex. J Neurophysiol 79:474–477

    CAS  PubMed  Google Scholar 

  • Mesulam M-M (2002) The human frontal lobes: transcending the default mode through contingent encoding (ch. 2). In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University press, Oxford, pp 8–30

    Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722

    Article  PubMed  Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Opris I, Santos L, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. J Comp Neurol 351(3):441–452

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Rezaie P (2008) The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 34:4–11

    CAS  PubMed  Google Scholar 

  • Sokhadze EM, El-Baz AS, Baruth J, Mathai G, Sears L, Casanova MF (2009) Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39(4):619–634

    Article  PubMed  Google Scholar 

  • Sokhadze EM, Baruth JM, Sears L, Sokhadze GE, El-Baz AS, Casanova MF (2012) Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl Psychophysiol Biofeedback 37(2):91–102

    Article  PubMed  Google Scholar 

  • Stroud CE (1994) Reliability of majority voting based VLSI fault-tolerant circuits. IEEE Trans VLSI Syst 2:516–521

    Article  Google Scholar 

  • Sukov W, Barth DS (2001) Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex. J Neurophysiol 85:1235–1245

    CAS  PubMed  Google Scholar 

  • Szentágothai J (1978) The Ferrier Lecture, 1977: the neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond B 201:219–248

    Article  PubMed  Google Scholar 

  • Tannan V, Holden JK, Zhang Z, Baranek GT, Tommerdahl M (2008) Perceptual metrics of individuals with autism provide evidence for disinhibition. Autism Res 1:223–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Tommerdahl M, Tannan V, Cascio CJ, Baraneck GT, Whistle BL (2007) Vibrotactile adaptation fails to enhance spatial location in adults with autism. Brain Res 1154:116–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Casanova, M.F. (2015). The Minicolumnopathy of Autism. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_13

Download citation

Publish with us

Policies and ethics