Skip to main content

The Relevance of Subplate Modifications to Connectivity in the Cerebral Cortex of Individuals with Autism Spectrum Disorders

  • Chapter
Book cover Recent Advances on the Modular Organization of the Cortex

Abstract

Autism spectrum disorders (ASDs) have been widely described as a neurodevelopmental condition characterized by connectional changes within the cerebral cortex. These alterations to connectivity are thought to underlie many of the behavioral and neurophysiological findings that characterize the disorder. Suggestions of altered connectivity are not unique to ASD, but have also been hypothesized as being a key component in epilepsy, Down syndrome, and schizophrenia. Here we discuss other disorders characterized by disconnectivity and ASD’s neuropathological relationship to these disconnectivity syndromes. One potentially important understudied contributor to disconnectivity in ASD is the cortical subplate. The subplate is a neurodevelopmental compartment that precedes the establishment of the cerebral cortex and that has been shown to be responsible for guiding a multitude of long-range connections within the brain. Although largely transitory during development, some subplate neurons persist into adulthood where they may play a role in gating activity within the overlying cortex and establishing synchronized activity between cortical regions. Findings in ASD suggest that the subplate may be an important contributor to alterations in cortical organization, but the complete nature of this contribution has yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus-callosum. Brain Res 598:143–153. doi:10.1016/0006-8993(92)90178-C

    CAS  PubMed  Google Scholar 

  • Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 34:61–73. doi:10.1016/j.neuroimage.2006.08.032

    PubMed  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure – its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218. doi:10.1146/annurev.neuro.17.1.185

    CAS  PubMed  Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496. doi:10.1002/cne.902300402

    CAS  PubMed  Google Scholar 

  • Asadi-Pooya AA, Sharan A, Nei M, Sperling MR (2008) Corpus callosotomy. Epilepsy Behav 13:271–278. doi:10.1016/j.yebeh.2008.04.020

    PubMed  Google Scholar 

  • Avino TA, Hutsler JJ (2010) Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 1360:138–146. doi:10.1016/j.brainres.2010.08.091

    CAS  PubMed  Google Scholar 

  • Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59:175–183

    CAS  PubMed  Google Scholar 

  • Badaruddin DH, Andrews GL, Bolte S, Schilmoeller KJ, Schilmoeller G, Paul LK, Brown WS (2007) Social and behavioral problems of children with agenesis of the corpus callosum. Child Psychiatry Hum Dev 38:287–302. doi:10.1007/s10578-007-0065-6

    PubMed  Google Scholar 

  • Bailey A, Luthert P, Bolton P, Le Couteur A, Rutter M, Harding B (1993) Autism and megalencephaly. Lancet 341:1225–1226

    CAS  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121:889–905. doi:10.1093/brain/121.5.889

    PubMed  Google Scholar 

  • Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS (2007) Dendritic and spinal pathology in the acoustic cortex in Alzheimer’s disease: morphological and morphometric estimation by Golgi technique and electron microscopy. Acta Otolaryngol 127:351–354. doi:10.1080/00016480601126986

    PubMed  Google Scholar 

  • Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326. doi:10.1016/j.biopsych.2003.10.022

    PubMed  Google Scholar 

  • Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126. doi:10.1146/annurev.neuro.27.070203.144137

    CAS  PubMed  Google Scholar 

  • Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, Williams SCR (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11:1891–1898

    CAS  PubMed  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87:791–796

    CAS  PubMed  Google Scholar 

  • Bauman ML (1996) Brief report: neuroanatomic observations of the brain in pervasive developmental disorders. J Autism Dev Disord 26:199–203

    CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, pp 119–145

    Google Scholar 

  • Bauman M, Kempter TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874. doi:10.1212/WNL.35.6.866

    CAS  PubMed  Google Scholar 

  • Benes FM, Paskevich PA, Davidson J, Domesick VB (1985) Synaptic rearrangements in medial prefrontal cortex of haloperidol-treated rats. Brain Res 348:15–20

    CAS  PubMed  Google Scholar 

  • Benítez-Bribiesca L, De la Rosa-Alvarez I, Mansilla-Olivares A (1999) Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics 104:e21

    PubMed  Google Scholar 

  • Bigler ED, Tate DF, Neeley ES, Wolfson LJ, Miller MJ, Rice SA, Cleavinger H, Anderson C, Coon H, Ozonoff S, Johnson M, Dinh E, Lu J, McMahon W, Lainhart JE (2003) Temporal lobe, autism, and macrocephaly. Am J Neuroradiol 24:2066–2076

    PubMed  Google Scholar 

  • Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, Bolliger MF, Sudhof TC, Powell CM (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115–2129. doi:10.1523/JNEUROSCI.4517-09.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RSJ, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. NeuroImage 23:364–369. doi:10.1016/j.neuroimage.2004.06.016

    CAS  PubMed  Google Scholar 

  • Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386. doi:10.1016/j.conb.2007.04.009

    CAS  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Elnakib A, Switala AE, Williams EL, Williams DL, Minshew NJ, Conturo TE (2011) Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals. Autism 15:223–238. doi:10.1177/1362361310386506

    PubMed Central  PubMed  Google Scholar 

  • Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in a baseline resting-state network in autism. Neuroreport 17:1687–1690. doi:10.1097/01.wnr.0000239956.45448.4c

    PubMed  Google Scholar 

  • Chung MK, Dalton KM, Alexander AL, Davidson RJ (2004) Less white matter concentration in autism: 2D voxel-based morphometry. NeuroImage 23:242–251. doi:10.1016/j.neuroimage.2004.04.037

    PubMed  Google Scholar 

  • Coben R, Clarke AR, Hudspeth W, Barry RJ (2008) EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol 119:1002–1009. doi:10.1016/j.clinph.2008.01.013

    PubMed  Google Scholar 

  • Courchesne E (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 10:106–111. doi:10.1002/mrdd.20020

    PubMed  Google Scholar 

  • Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230. doi:10.1016/j.conb.2005.03.001

    CAS  PubMed  Google Scholar 

  • Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Couchesne R, Lincoln AJ, James HE, Haas RH, Schreibman L, Lau L (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108:848–865. doi:10.1037//0735-7044.108.5.848

    CAS  PubMed  Google Scholar 

  • Courchesne E, Müller RA, Saitoh O (1999) Brain weight in autism: normal in the majority of cases, megalencephalic in rare cases. Neurology 52:1057–1059

    CAS  PubMed  Google Scholar 

  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344. doi:10.1001/jama.290.3.337

    PubMed  Google Scholar 

  • Courchesne E, Redcay E, Kennedy DP (2004) The autistic brain: birth through adulthood. Curr Opin Neurol 17:489–496

    PubMed  Google Scholar 

  • Critchley HD, Daly EM, Bullmore ET, Williams SCR, Van Amelsvoort T, Robertson DM, Rowe A, Phillips M, McAlonan G, Howlin P, Murphy DGM (2000) The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123:2203–2212

    PubMed  Google Scholar 

  • Dawson G, Ashman SB, Carver LJ (2000) The role of early experience in shaping behavioral and brain development and its implications for social policy. Dev Psychopathol 12:695–712. doi:10.1017/S0954579400004089

    CAS  PubMed  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464. doi:10.1002/ana.410270502

    CAS  PubMed  Google Scholar 

  • Demark JL, Feldman MA, Holden JJA (2003) Behavioral relationship between autism and fragile x syndrome. Am J Ment Retard 108:314–326. doi:10.1352/0895-8017(2003)108<314:BRBAAF>2.0.CO;2

    PubMed  Google Scholar 

  • Dietzmann K, von Bossanyi P (1994) Dendritic spines and immunoreactivity of synaptophysin in the frontal cortex of humans with infantile brain damage: a correlative study. Clin Neuropathol 13:127–133

    CAS  PubMed  Google Scholar 

  • Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M, Courchesne E (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225. doi:10.1016/j.neuron.2011.04.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni M-C, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27. doi:10.1038/ng1933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2003) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8:821–831. doi:10.1038/sj.mp.4001371

    CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2005) Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia. Schizophr Res 79:181–188. doi:10.1016/j.schres.2005.07.001

    CAS  PubMed  Google Scholar 

  • Emery JA, Roper SN, Rojiani AM (1997) White matter neuronal heterotopia in temporal lobe epilepsy: a morphometric and immunohistochemical study. J Neuropathol Exp Neurol 56:1276–1282

    CAS  PubMed  Google Scholar 

  • Fellous J-M, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrer I, Galofré E (1987) Dendritic spine anomalies in fetal alcohol syndrome. Neuropediatrics 18:161–163. doi:10.1055/s-2008-1052472

    CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39:29–54

    PubMed  Google Scholar 

  • Filipek PA, Richelme C, Kennedy DN, Rademacher J, Pitcher DA, Zidel S, Caviness VS (1992) Morphometric analysis of the brain in developmental language disorders and autism. Ann Neurol 32:475

    Google Scholar 

  • Friedlander MJ, Torres-Reveron J (2009) The changing roles of neurons in the cortical subplate. Front Neuroanat 3:15. doi:10.3389/neuro.05.015.2009

    PubMed Central  PubMed  Google Scholar 

  • Frith C (2004) Is autism a disconnection disorder? Lancet Neurol 3:577. doi:10.1016/S1474-4422(04)00875-0

    PubMed  Google Scholar 

  • Frith U, Happé F (1994) Autism: beyond “theory of mind”. Cognition 50:115–132

    CAS  PubMed  Google Scholar 

  • Gage NM, Siegel B, Callen M, Roberts TPL (2003) Cortical sound processing in children with autism disorder: an MEG investigation. Neuroreport 14:2047–2051. doi:10.1097/01.wnr.0000090030.460874a

    PubMed  Google Scholar 

  • Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659. doi:10.1038/nrn1723

    CAS  PubMed  Google Scholar 

  • Gervais H, Belin P, Boddaert N, Leboyer M, Coez A, Sfaello I, Barthelemy C, Brunelle F, Samson Y, Zilbovicius M (2004) Abnormal cortical voice processing in autism. Nat Neurosci 7:801–802. doi:10.1038/nn1291

    CAS  PubMed  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111. doi:10.1016/j.conb.2007.01.009

    CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    CAS  PubMed  Google Scholar 

  • Goldstein G, Minshew NJ, Allen DN, Seaton BE (2002) High-functioning autism and schizophrenia: a comparison of an early and late onset neurodevelopmental disorder. Arch Clin Neuropsychol 17:461–475

    PubMed  Google Scholar 

  • Gościk E, Kulak P (2011) Agenesis of corpus callosum: genetics, epidemiology and neuroimaging findings. Prog Health Sci 1:126–131

    Google Scholar 

  • Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE (2012) A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 72:215–220. doi:10.1016/j.biopsych.2012.01.026

    PubMed Central  PubMed  Google Scholar 

  • Grossberg S, Seidman D (2006) Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 113:483–525. doi:10.1037/0033-295x.113.3.483

    PubMed  Google Scholar 

  • Grossberg S, Seitz A (2003) Laminar development of receptive fields, maps and columns in visual cortex: the coordinating role of the subplate. Cereb Cortex 13:852–863

    PubMed  Google Scholar 

  • Halpain S, Spencer K, Graber S (2005) Dynamics and pathology of dendritic spines. Prog Brain Res 147:29–37. doi:10.1016/S0079-6123(04)47003-4

    CAS  PubMed  Google Scholar 

  • Hanganu IL, Okabe A, Lessmann V, Luhmann HJ (2009) Cellular mechanisms of subplate-driven and cholinergic input-dependent network activity in the neonatal rat somatosensory cortex. Cereb Cortex 19:89–105. doi:10.1093/cercor/bhn061

    PubMed  Google Scholar 

  • Happe F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36:5–25. doi:10.1007/s10803-005-0039-0

    PubMed  Google Scholar 

  • Hardan AY, Minshew NJ, Keshavan MS (2000) Corpus callosum size in autism. Neurology 55:1033–1036

    CAS  PubMed  Google Scholar 

  • Hardan AY, Jou RJ, Keshavan MS, Varma R, Minshew NJ (2004) Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res 131:263–268. doi:10.1016/j.pscychresns.2004.06.001

    PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192. doi:10.1093/brain/awg110

    CAS  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530–540. doi:10.1002/ana.20032

    PubMed  Google Scholar 

  • Hildebrandt M, Pieper T, Winkler P, Kolodziejczyk D, Holthausen H, Blumcke I (2005) Neuropathological spectrum of cortical dysplasia in children with severe focal epilepsies. Acta Neuropathol 110:1–11. doi:10.1007/s00401-005-1016-6

    PubMed  Google Scholar 

  • Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, Singaraja RR, Cao X, Sammler E, Hormuzdi SG, Zhuo M, El-Husseini A (2008) Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci 28:6055–6067. doi:10.1523/JNEUROSCI.0032-08.2008

    CAS  PubMed  Google Scholar 

  • Holtmaat A, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang XQ, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291. doi:10.1016/j.neuron.2005.01.003

    CAS  PubMed  Google Scholar 

  • Holtzman JD, Gazzaniga MS (1985) Enhanced dual task performance following corpus commissurotomy in humans. Neuropsychologia 23:315–321

    CAS  PubMed  Google Scholar 

  • Hong SS, Ke XY, Tang TY, Hang YY, Chu KK, Huang HQ, Ruan ZC, Lu ZH, Tao GT, Liu YJ (2011) Detecting abnormalities of corpus callosum connectivity in autism using magnetic resonance imaging and diffusion tensor tractography. Psychiatry Res 194:333–339. doi:10.1016/j.pscychresns.2011.03.009

    PubMed  Google Scholar 

  • Hughes JR (2007) Autism: the first firm finding = underconnectivity? Epilepsy Behav 11:20–24. doi:10.1016/j.yebeh.2007.03.010

    PubMed  Google Scholar 

  • Hutsler JJ, Avino TA (2013) Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 212:242–246. doi:10.1016/j.jneumeth.2012.10.007

    PubMed  Google Scholar 

  • Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94. doi:10.1016/j.brainres.2009.09.120

    CAS  PubMed  Google Scholar 

  • Hutsler JJ, Love T, Zhang H (2007) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457. doi:10.1016/j.biopsych.2006.01.015

    PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    CAS  PubMed  Google Scholar 

  • Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044

    CAS  PubMed  Google Scholar 

  • Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB, Swain RA, Weiler IJ, Greenough WT (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167. doi:10.1002/1096-8628(20010115)98:2<161::aid-ajmg1025>3.0.co;2-b

    CAS  PubMed  Google Scholar 

  • Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29. doi:10.1038/ng1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821. doi:10.1093/brain/awh199

    PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17:951–961. doi:10.1093/cercor/bhl006

    PubMed  Google Scholar 

  • Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313. doi:10.1016/j.neubiorev.2012.02.007

    PubMed Central  PubMed  Google Scholar 

  • Kana RK, Libero LE, Moore MS (2011) Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev 8:410–437. doi:10.1016/j.plrev.2011.10.001

    PubMed  Google Scholar 

  • Kanold PO (2004) Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport 15:2149–2153

    PubMed  Google Scholar 

  • Kanold PO, Kara P, Reid RC, Shatz CJ (2003) Role of subplate neurons in functional maturation of visual cortical columns. Science 301:521–525. doi:10.1126/science.1084152

    CAS  PubMed  Google Scholar 

  • Kaufmann WE, Cortell R, Kau ASM, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P (2004) Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 129A:225–234. doi:10.1002/ajmg.a.30229

    PubMed  Google Scholar 

  • Koenderink MJ, Uylings HB (1995) Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex: a quantitative Golgi analysis. Brain Res 678:233–243

    PubMed  Google Scholar 

  • Koenderink MJ, Uylings HB, Mrzljak L (1994) Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: a quantitative Golgi analysis. Brain Res 653:173–182

    CAS  PubMed  Google Scholar 

  • Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage 24:810–821. doi:10.1016/j.neuroimage.2004.09.028

    PubMed  Google Scholar 

  • Kostovic I, Judas M, Sedmak G (2011) Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int J Dev Neurosci 29:193–205. doi:10.1016/j.ijdevneu.2010.09.005

    PubMed  Google Scholar 

  • Lamantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus-callosum of the developing rhesus monkey. J Neurosci 10:2156–2175

    CAS  PubMed  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BCJ, Andres C, Barthelemy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557. doi:10.1086/382137

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeBlanc JJ, Fagiolini M (2011) Autism: a “critical period” disorder? Neural Plast 2011:921680. doi:10.1155/2011/921680

    PubMed Central  PubMed  Google Scholar 

  • Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685

    CAS  PubMed  Google Scholar 

  • Luhmann HJ, Kilb W, Hanganu-Opatz IL (2009) Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex. Front Neuroanat 3:19. doi:10.3389/neuro.05.019.2009

    PubMed Central  PubMed  Google Scholar 

  • Luna B, Doll SK, Hegedus SJ, Minshew NJ, Sweeney JA (2007) Maturation of executive function in autism. Biol Psychiatry 61:474–481. doi:10.1016/j.biopsych.2006.02.030

    PubMed  Google Scholar 

  • McAllister AK (1999) Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity? Proc Natl Acad Sci U S A 96:13600–13602

    CAS  PubMed Central  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1994) Subplate pioneers and the formation of descending connections from cerebral cortex. J Neurosci 14:1892–1907

    CAS  PubMed  Google Scholar 

  • McFadden K, Minshew NJ (2013) Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci 7:671–681. doi:10.3389/fnhum.2013.00671

    PubMed Central  PubMed  Google Scholar 

  • Michel AE, Garey LJ (1984) The development of dendritic spines in the human visual cortex. Hum Neurobiol 3:223–227

    CAS  PubMed  Google Scholar 

  • Minshew NJ, Luna B, Sweeney JA (1999) Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology 52:917–922. doi:10.1212/WNL.52.5.917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno A, Villalobos ME, Davies MM, Dahl BC, Muller RA (2006) Partially enhanced thalamocortical functional connectivity in autism. Brain Res 1104:160–174. doi:10.1016/j.brainres.2006.05.064

    CAS  PubMed  Google Scholar 

  • Multani P, Myers RH, Blume HW, Schomer DL, Sotrel A (1994) Neocortical dendritic pathology in human partial epilepsy: a quantitative Golgi study. Epilepsia 35:728–736

    CAS  PubMed  Google Scholar 

  • Mundy P, Neal R (2001) Neural plasticity, joint attention and autistic developmental pathology. Int Rev Res Ment Ret 23:139–168

    Google Scholar 

  • Murias M, Webb SJ, Greenson J, Dawson G (2007) Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry 62:270–273. doi:10.1016/j.biopsych.2006.11.012

    PubMed Central  PubMed  Google Scholar 

  • Nikonenko I, Boda B, Alberi S, Muller D (2005) Application of photoconversion technique for correlated confocal and ultrastructural studies in organotypic slice cultures. Microsc Res Tech 68:90–96. doi:10.1002/jemt.20239

    PubMed  Google Scholar 

  • Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, Tobimatsu S, Kamio Y (2010) Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res 1362:141–149. doi:10.1016/j.brainres.2010.09.051

    CAS  PubMed  Google Scholar 

  • O’Brien G (1994) The behavioral and developmental consequences of corpus callosal agenesis and Aicardi syndrome. In: Lassonde M, Jeeves M (eds) Callosal agenesis. Springer, New York, pp 235–246

    Google Scholar 

  • O’Hearn K, Asato M, Ordaz S, Luna B (2008) Neurodevelopment and executive function in autism. Dev Psychopathol 20:1103–1132. doi:10.1017/s0954579408000527

    PubMed  Google Scholar 

  • O’Roak BJ, Vives L, Fu WQ, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O’Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–1622. doi:10.1126/science.1227764

    PubMed Central  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. doi:10.1038/nn.2741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149

    CAS  PubMed  Google Scholar 

  • Piven J, Bailey J, Ranson BJ, Arndt S (1997) An MRI study of the corpus callosum in autism. Am J Psychiatr 154:1051–1056

    CAS  PubMed  Google Scholar 

  • Pugash D, Hendson G, Dunham CP, Dewar K, Money DM, Prayer D (2012) Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination. Ultrasound Obstet Gynecol 40:642–651. doi:10.1002/uog.11164

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Kinsbourne M, Moscovitch M (1990) Hemispheric control of spatial attention. Brain Cogn 12:240–266. doi:10.1016/0278-2626(90)90018-J

    CAS  PubMed  Google Scholar 

  • Sabaratnam M (2000) Pathological and neuropathological findings in two males with fragile-X syndrome. J Intellect Disabil Res 44(Pt 1):81–85

    PubMed  Google Scholar 

  • Sabbagh MA (2004) Understanding orbitofrontal contributions to theory-of-mind reasoning: implications for autism. Brain Cogn 55:209–219. doi:10.1016/j.banc.2003.04.002

    PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508. doi:10.1212/01.wnl.0000260698.46517.8f

    CAS  PubMed  Google Scholar 

  • Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F, Skudlarski P, Lacadic C, Cohen DJ, Gore JC (2000) Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry 57:331–340

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Luskin MB (1986) The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex. J Neurosci 6:3655–3668

    CAS  PubMed  Google Scholar 

  • Shukla DK, Keehn B, Lincoln AJ, Muller RA (2010) White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 49:1269–1278. doi:10.1016/j.jaac.2010.08.018

    PubMed Central  PubMed  Google Scholar 

  • Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684. doi:10.1007/s00401-009-0568-2

    PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  • Suarez-Sola ML, Gonzalez-Delgado FJ, Pueyo-Morlans M, Medina-Bolivar OC, Hernandez-Acosta NC, Gonzalez-Gomez M, Meyer G (2009) Neurons in the white matter of the adult human neocortex. Front Neuroanat 3:7. doi:10.3389/neuro.05.007.2009

    PubMed Central  PubMed  Google Scholar 

  • Suetsugu M, Mehraein P (1980) Spine distribution along the apical dendrites of the pyramidal neurons in Down’s syndrome: a quantitative Golgi study. Acta Neuropathol 50:207–210

    CAS  PubMed  Google Scholar 

  • Swann JW, Al-Noori S, Jiang M, Lee CL (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10:617–625. doi:10.1002/1098-1063(2000)10:5<617::AID-HIPO13>3.0.CO;2-R

    CAS  PubMed  Google Scholar 

  • Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2009) Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34:374–389. doi:10.1038/npp.2008.67

    PubMed Central  PubMed  Google Scholar 

  • Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu XR, Powell CM, Sudhof TC (2007) Neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318:71–76. doi:10.1126/science.1146221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takashima S, Chan F, Becker LE, Kuruta H (1991) Aberrant neuronal development in hemimegalencephaly: immunohistochemical and Golgi studies. Pediatr Neurol 7:275–280

    CAS  PubMed  Google Scholar 

  • Turk AA, Brown WS, Symington M, Paul LK (2010) Social narratives in agenesis of the corpus callosum: linguistic analysis of the Thematic Apperception Test. Neuropsychologia 48:43–50. doi:10.1016/j.neuropsychologia.2009.08.009

    PubMed  Google Scholar 

  • Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci U S A 106:9866–9871. doi:10.1073/pnas.0900390106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets. J Comp Neurol 289:74–88

    CAS  PubMed  Google Scholar 

  • Voigt T, Opitz T, de Lima AD (2001) Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J Neurosci 21:8895–8905

    CAS  PubMed  Google Scholar 

  • Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones KA, Quilliam LA, Prakriya M, Penzes P (2009) Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat Neurosci 12:1275-U96. doi:10.1038/nn.2386

    Google Scholar 

  • Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71:772–781. doi:10.1016/j.neuron.2011.07.024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuste R, Majewska A (2001) On the function of dendritic spines. Neuroscientist 7:387–395

    CAS  PubMed  Google Scholar 

  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609. doi:10.1523/jneurosci.2257-10.2010

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Hutsler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutsler, J.J., Avino, T. (2015). The Relevance of Subplate Modifications to Connectivity in the Cerebral Cortex of Individuals with Autism Spectrum Disorders. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_12

Download citation

Publish with us

Policies and ethics