Skip to main content

Assessing the Impact of Land-Use Changes on Providing Hydrological Ecosystem Functions (ESF) and Services (ESS) – A Case-Study Experience Based Conceptual Framework

  • Chapter
Ecosystem Services and River Basin Ecohydrology

Abstract

In this chapter, requirements for and lessons learnt from assessing the impact of land use and land cover change (LULCC) on the provision of hydrological ecosystem functions (ESF) and services (ESS) are demonstrated based on selected case studies. First, potentials, limits and transferability of a detailed land classification scheme developed for Germany are explored. Second, an approach how to make use of landscape metrics to correct the assessment of ESF and ESS provision in LULCC impact assessment is presented to better account for land-use pattern heterogeneity. Third, the potential of Hydrological Response Units (HRU) to bridge scale-related discrepancies between modeling, assessment and decision units is discused. Finally, a conceptual framework approach is suggested that builds on the HRU concept and merges the latter with a cellular automaton based LULCC impact assessment framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri BJ, Nakane K (2009) Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan. Water Resour Manag 23(5):931–956

    Article  Google Scholar 

  • Anonymous (2005) Richtlinie zu den Bestandeszieltypen (BZT) für den Staatswald des Freistaates Sachsen [Internet]. 2005. Sächsisches Staatsministerium für Umwelt und Landwirtschaft. www.forsten.sachsen.de/wald/249.htm

  • Anonymous (2010) Federal state office of statistics Saxony, 2010. Flächennutzung in Sachsen 2010.www.statistik.sachsen.de/html/506.htm

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment—part I: model development. J Am Water Resour Assoc 34(1):7389

    Google Scholar 

  • Bach M, Breuer L, Frede HG, Huisman JA, Otte A, Waldhardt R (2006) Accuracy and congruency of three different digital land-use maps. Landsc Urban Plan 78(4):289–299

    Article  Google Scholar 

  • Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50

    Article  Google Scholar 

  • Bartel A (2000) Analysis of landscape pattern: towards a ‘top down’ indicator for evaluation of landuse. Ecol Model 130(1–3):87–94

    Article  Google Scholar 

  • Belcher KW, Boehm MM, Fulton ME (2004) Agroecosystem sustainability: a system simulation model approach. Agric Syst 79:225–241

    Article  Google Scholar 

  • Bell KP, Irwin EG (2002) Spatially explicit micro-level modelling of land-use change at the rural–urban interface. Agric Econ 27(3):217–232

    Article  Google Scholar 

  • Bende-Michl U, Kemnitz D, Helmschrot J, Krause P, Cresswell H, Kralisch S, Fink M, Flügel WA (2007) Supporting natural resources management in Tasmania through spatially distributed solute modeling with JAMS/J2000-S. In: Proceedings MODSIM 2007. mssanz.org.au/MODSIM07/papers/43_s47/SupportingNaturals47_Bende-Michl_.pdf

  • Bossa AY, Diekkrüger B, Giertz S, Steup G, Sintondji LO, Agbossou EK, Hiepe C (2012) Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agric Water Manag 115:20–37

    Article  Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98

    Article  Google Scholar 

  • Brinson MM (2011) Classification of wetlands. In: LePage BA (ed) Wetlands – integrating multidisciplinary concepts. Springer, Dordrecht/New York

    Google Scholar 

  • Cochinos R (2000) Introduction to the theory of cellular automata and one-dimensional traffic simulation. www.theory.org/complexity/traffic

  • Colditz RR, Schmidt M, Conrad C, Hansen MC, Dech S (2011) Land-cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions. Remote Sens Environ 115(12):3264–3275

    Article  Google Scholar 

  • Dale VH, Polasky S (2007) Measures of the effects of agricultural practices on ecosystem services. Ecol Econ 64:286–296

    Article  Google Scholar 

  • DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186

    Article  Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27

    Article  Google Scholar 

  • Eigenbrod F, Bell VA, Davies HN, Heinemeyer A, Armsworth PR, Gaston KJ (2011) The impact of projected increases in urbanization on ecosystem services. Proc R Soc B Biol Sci 278(1722):3201–3208

    Article  CAS  Google Scholar 

  • Eisenhauer DR, Sonnemann S (2009) Silvicultural strategies under changing environmental conditions – guiding principles, target system and forest development types. Waldökologie, Landschaftsforschung und Naturschutz 8:71–88

    Google Scholar 

  • Erb KH (2012) How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol Econ 76:8–14

    Article  Google Scholar 

  • Fink M, Krause P, Kralisch S, Bende-Michl U, Flügel W-A (2007) Development and application of the modelling system J2000-S for the EU-water framework directive. Adv Geosci 11:123–130

    Article  Google Scholar 

  • Fink M, Wetzel M, Kipka H, Varga D, Kralisch S, Flügel W-A (2012) Designing a measurement network in a meso-scale catchment to provide data for modelling. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) Proceedings of the International Environmental Modelling and Software Society (iEMSs) 2012, sixth biennial meeting, Leipzig, Germany

    Google Scholar 

  • Flügel WA (1996a) Hydrological Response Units (HRU) as modelling entities for hydrological river basin simulation and their methodological potential for modelling complex environmental process systems. – Results from the Sieg catchment. Die Erde 127:42–62

    Google Scholar 

  • Flügel WA (1996b) Application of GIS to derive hydrological response units for hydrological modelling in the Bröl catchment. IAHS-Publ 235:413–420

    Google Scholar 

  • Flügel WA (2011a) Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches – results from the EC- projects BRAHMATWINN. Adv Sci Res 7:1–9

    Article  Google Scholar 

  • Flügel WA (2011b) Development of adaptive IWRM options for climate change mitigation and adaption. Adv Sci Res 7:91–100

    Article  Google Scholar 

  • Flügel WA (2011c) Geoinformatics concepts, methods and toolsets for comprehensive impact assessment and analysis of climate change for IWRM. In: Joshi PK (ed) Geoinformatics for climate change studies. Springer/TERI Press, New Delhi

    Google Scholar 

  • Frank S, Fürst C, Koschke L, Makeschin F (2012) Towards the transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecol Indic 21:30–38

    Article  Google Scholar 

  • Fürst C, Volk M, Pietzsch K, Makeschin F (2010a) Pimp your landscape: a tool for qualitative evaluation of the effects of regional planning measures on ecosystem services. Environ Manag 46(6):953–968

    Article  Google Scholar 

  • Fürst C, König HJ, Pietzsch K, Ende HP, Makeschin F (2010b) Pimp your landscape – a generic approach for integrating regional stakeholder needs into land-use planning. Ecol Soc 15(3):34. www.ecologyandsociety.org/vol15/iss3/art34/

  • Fürst C, Lorz C, Makeschin F (2011) Integrating land-management and land-cover classes to assess impacts of land-use change on ecosystem services. Int J Biodivers Sci Ecosyst Serv Manag 7(3):168–181

    Article  Google Scholar 

  • Fürst C, Pietzsch K, Frank S, Koschke L, Witt A, Makeschin F (2012) How to better consider sectoral planning information in regional planning – example afforestation and forest conversion. J Environ Plan Manag 55(7):855–883

    Google Scholar 

  • Fürst C, Frank S, Witt A, Koschke L, Makeschin F (2013) Assessment of the effects of forest land-use strategies on the provision of ecosystem services at regional scale. J Environ Manag 127:96–116

    Article  Google Scholar 

  • Grêt-Regamey A, Brunner SH, Altweg J, Bebi P (2012) Facing uncertainty in ecosystem services-based resource management. J Environ Manag. http://dx.doi.org/10.1016/j.jenvman.2012.07.028

  • Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408

    Article  Google Scholar 

  • Gulinck H, Wagendorp T (2002) References for fragmentation analysis of the rural matrix in cultural landscapes. Landsc Urban Plan 58(2–4):137–146

    Article  Google Scholar 

  • Haynes-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) Ecosystem ecology: a new synthesis. BES ecological reviews series. CUP, Cambridge

    Google Scholar 

  • Hein S, Pfenning B, Hovestadt T, Poethke H-J (2004) Patch density, movement pattern, and realised dispersal distances in a patch-matrix landscape—a simulation study. Ecol Model 174(4):411–420

    Article  Google Scholar 

  • Heinrich K, Ullrich F, Hofmann E (2009) Betriebs- und Landnutzungsformen 2008 in Sachsen. Schriftenreihe des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie 34:63 pp. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-25396

  • Hörmann G, Horn A, Fohrer N (2005) The evaluation of land-use options in mesoscale catchments: prospects and limitations of eco-hydrological models. Ecol Model 187(1):3–14

    Article  Google Scholar 

  • Hou W, Walz U (2013) Enhanced analysis of landscape structure: inclusion of transition zones and small-scale landscape elements. Ecol Indic 31:15–24

    Article  Google Scholar 

  • Hought J, Birch-Thomsen T, Petersen J, de Neergaard A, Oelofse M (2012) Biofuels, land-use change and smallholder livelihoods: a case study from BanteayChhmar, Cambodia. Appl Geogr 34:525–532

    Article  Google Scholar 

  • Immerzeel W, Stoorvogel J, Antle J (2008) Can payments for ecosystem services secure the water tower of Tibet? Agric Syst 96(1–3):52–63

    Article  Google Scholar 

  • Itami RM (1994) Simulating spatial dynamics: cellular automata theory. Landsc Urban Plan 30(1–2):27–47

    Article  Google Scholar 

  • Jaeger JAG, Bertiller R, Schwick C, Müller K, Steinmeier C, Ewald KC, Ghazoul J (2008) Implementing landscape fragmentation as an indicator in the Swiss Monitoring System of Sustainable Development (Monet). J Environ Manag 88:737–751

    Article  Google Scholar 

  • Janssen S, van Ittersum MK (2007) Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agric Syst 94:622–636

    Article  Google Scholar 

  • Kim KH, Pauleit S (2007) Landscape character, biodiversity and land-use planning: the case of Kwangju City region, South Korea. Land Use Policy 24:264–274

    Article  Google Scholar 

  • Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213(1–3):102–116

    Article  Google Scholar 

  • Kopp D, Schwanecke W (1994) Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft. Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  • Koschke L, Fürst C, Frank S, Makeschin F (2012) A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision for planning support. Ecol Indic 21:54–66

    Article  Google Scholar 

  • Koschke L, Fürst C, Lorenz M, Witt A, Frank S, Makeschin F (2013) The integration of crop rotation and tillage practices in the assessment of ecosystem services provision at the regional scale. Ecol Indic 32:157–171

    Article  Google Scholar 

  • Koschke L, Lorz C, Fürst C, Lehmann T, Makeschin F (2014) Assessing hydrological and provisioning ecosystem services in a case study in Western Central Brazil. Ecol Process 3:2. doi:10.1186/2192-1709-3-2

    Article  Google Scholar 

  • Kralisch S, Krause P, Fink M, Fischer C, Flügel W-A (2007) Component based environmental modelling using the JAMS framework. In: Kulasiri D, Oxley L (eds) MODSIM 2007, December 2007. mssanz.org.au/MODSIM07/papers/14_s51/ComponentBasedEnvironmenta_s51_Kralisch_l.pdf

  • Kralisch S, Böhm B, Böhm C, Busch C, Fink M, Fischer C, Schwartze C, Selsam P, Zander F, Flügel WA (2012) ILMS – a software platform for integrated environmental management. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) iEMSs proceedings, 2012. www.iemss.org/society/index.php/iemss-2012-proceedings

  • Krause P, Flügel W-A (2005) Model Integration and development of modular modelling systems. Adv Geosci 4:1–2

    Google Scholar 

  • Krause P, Bende-Michl U, Bäse F, Fink M, Flügel WA, Pfennig B (2006) Multiscale investigations in a mesoscale catchment – hydrological modelling in the Gera catchment. Adv Geosci 9:53–61

    Article  Google Scholar 

  • Kristjanson P, Radeny M, Baltenweck I, Ogutu J, Notenbaert A (2005) Livelihood mapping and poverty correlates at a meso-level in Kenya. Food Policy 30(5–6):568–583

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2010) Land-use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27(2):108–118

    Article  Google Scholar 

  • Laszlo A, Krippner S (1998) Systems theories: their origins, foundations, and development. In: Jordan JS (ed) Systems theories and a priori aspects of perception. Elsevier Science, Amsterdam, pp 47–74

    Chapter  Google Scholar 

  • Laterra P, Orúe ME, Booman GC (2012) Spatial complexity and ecosystem services in rural landscapes. Agric Ecosyst Environ 154:56–67

    Article  Google Scholar 

  • Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land-use data. Ecol Indic 11(2):676–687

    Article  Google Scholar 

  • Lebel L, Daniel R (2009) The governance of ecosystem services from tropical upland watersheds. Curr Opin Environ Sustain 1(1):61–68

    Article  Google Scholar 

  • Logsdon RA, Chaubey I (2012) A quantitative approach to evaluating ecosystem services. Ecol Model 257:57–65

    Article  Google Scholar 

  • Lomba A, Bunce RGH, Jongman RHG, Moreira F, Honrado J (2011) Interactions between abiotic filters, landscape structure and species traits as determinants of dairy farmland plant diversity. Landsc Urban Plan 99(3–4):248–258

    Article  Google Scholar 

  • Lorenz M, Fürst C, Thiel E (2013) A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example. J Environ Manag 127(Suppl):37–47

    Google Scholar 

  • Łowicki D (2012) Prediction of flowing water pollution on the basis of landscape metrics as a tool supporting delimitation of Nitrate Vulnerable Zones. Ecol Indic 23:27–33

    Article  Google Scholar 

  • Maltby E, Hogan DV, Immirzi CP, Tellam JH, Van der Peijl M (1994) Building a new approach to the investigation and assessment of wetland ecosystem functioning. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier, Amsterdam

    Google Scholar 

  • MEA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. www.millenniumassessment.org

  • Metzger MJ, Rounsevell MDA, Acosta-Michlik L, Leemans R, Schröter D (2006) The vulnerability of ecosystem services to land use change. Agric Ecosyst Environ 114(1):69–85

    Article  Google Scholar 

  • Nedkov S, Burkhard B (2012) Flood regulating ecosystem services—mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol Indic 21:67–79

    Article  Google Scholar 

  • Nepal S, Krause P, Flügel W-A, Fink M, Fischer C (2012) Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol Process. doi:10.1002/hyp.9627. Wiley Online Library

  • Norman LM, Feller M, Villarreal ML (2012) Developing spatially explicit footprints of plausible land-use scenarios in the Santa Cruz Watershed, Arizona and Sonora. Landsc Urban Plan 107(3):225–235

    Article  Google Scholar 

  • Pabst RJ, Goslin MN, Garman SL, Spies TA (2008) Calibrating and testing a gap model for simulating forest management in the Oregon Coast range. For Ecol Manag 256(5):958–972

    Article  Google Scholar 

  • Pfennig B, Kipka H, Wolf M, Fink M, Krause P, Flügel W-A (2009) Development of an extended spatially distributed routing scheme and its impact on process oriented hydrological modelling results. IAHS Publ 333:37–43

    Google Scholar 

  • Poggio SL, Chaneton EJ, Ghersa CM (2012) The arable plant diversity of intensively managed farmland: effects of field position and crop type at local and landscape scales. Agric Ecosyst Environ 166:55–64. doi:10.1016/j.agee.2012.01.013

    Article  Google Scholar 

  • Power A (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond B Biol Sci 365(1554):2959–2971

    Article  Google Scholar 

  • Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162(1):3–21

    Article  Google Scholar 

  • Quintero M, Wunder S, Estrada RD (2009) For services rendered? Modeling hydrology and livelihoods in Andean payments for environmental services schemes. For Ecol Manag 258(9):1871–1880

    Article  Google Scholar 

  • Renetzeder C, Schindler S, Peterseil J, Prinz MA, Mücher S, Wrbka T (2010) Can we measure ecological sustainability? Landscape pattern as an indicator for naturalness and land-use intensity at regional, national and European level. Ecol Indic 10:39–48

    Article  Google Scholar 

  • Rode M, Thiel E, Franko U, Wenk G, Hesser F (2009) Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso-scale catchments in Central Germany. Sci Total Environ 407:3459–3472

    Article  CAS  Google Scholar 

  • Rounsevell MDA, Pedroli B, Erb KH, Gramberger M, Busck Gravsholt A, Haberl H, Kristensen S, Kuemmerle T, Lavorel S, Lindner M, Lotze-Campen H, Metzger MJ, Murray-Rust D, Popp A, Pérez-Soba M, Reenberg A, Vadineanu A, Verburg PH, Wolfslehner B (2012) Challenges for land system science. Land Use Policy 29(4):899–910

    Article  Google Scholar 

  • Schober R (1995) Ertragstafeln wichtiger Baumarten, JD-Sauerländer Verlag Frankfurt am Main, 4. Aufl., 166 pp

    Google Scholar 

  • Schönhart M, Schauppenlehner T, Schmid E, Muhar A (2011a) Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level. Agric Syst 104:122–134

    Article  Google Scholar 

  • Schönhart M, Schmid E, Schneider UA (2011b) CropRota – a crop rotation model to support integrated land-use assessments. Eur J Agron 34(4):263–277

    Article  Google Scholar 

  • Schulp CJE, Veldkamp A (2008) Long-term landscape – land-use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes. Geoderma 146(3–4):457–465

    Article  CAS  Google Scholar 

  • Seppelt R, Müller F, Schröder B, Volk M (2009) Challenges of simulating complex environmental systems at the landscape scale: a controversial dialogue between two cups of espresso. Ecol Model 220(24):3481–3489

    Article  Google Scholar 

  • Spieker H, Hansen J, Klimo E (2004) Norway spruce conversion: options and consequences, European forest institute research reports European forest I (Book 18). Brill Academic Publishers, Leiden

    Google Scholar 

  • Sponagel H, Grottenthaler W, Hartmann KJ, Hartwich R, Jaentzko P, Joisten H, Kühn D, Sabel KJ, Traidel R (2005) Bodenkundliche Kartieranleitung. Ad-hoc-AG Boden, Schweizerbart’sche Verlagsbuchhandlung

    Google Scholar 

  • Syrbe RU, Walz U (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Indic 21:80–88

    Article  Google Scholar 

  • Trabucchi M, Ntshotsho P, O’Farrell P, Comín FA (2012) Ecosystem service trends in basin-scale restoration initiatives: a review. J Environ Manag 111:18–23

    Article  Google Scholar 

  • Troy B, Sarron C, Fritsch JM, Rollin D (2007) Assessment of the impacts of land-use changes on the hydrological regime of a small rural catchment in South Africa. Phys Chem Earth A/B/C 32(15–18):984–994

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Uuemaa E, Roosaare J, Mander Ü (2005) Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol Indic 5(4):350–369

    Article  Google Scholar 

  • Uuemaa E, Mander Ü, Marja R (2013) Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecol Indic 28:100–106

    Article  Google Scholar 

  • Van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota – a review with a focus on German data. Eur J Soil Biol 50:165–181

    Article  Google Scholar 

  • Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan-Olsson J, Andersen E, Bezlepkina I, Brouwer B, Donatelli M, Flichman G, Olsson L, Rizzoli AE, van der Wal T, Wien JE, Wolf J (2008) Integrated assessment of agricultural systems – a component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165

    Article  Google Scholar 

  • Van Oudenhoven APE, Petz K, Alkemade R, Hein L, de Groot RS (2012) Framework for systematic indicator selection to assess effects of land-management on ecosystem services. Ecol Indic 21:110–122

    Article  Google Scholar 

  • Verburg PH, de Nijs TCM, Ritsema van Eck J, Visser H, de Jong K (2004) A method to analyse neighbourhood characteristics of land-use patterns. Comput Environ Urban Syst 28(6):667–690

    Article  Google Scholar 

  • Verburg PH, Van de Steeg J, Veldkamp A, Willemen L (2009) From land-cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manag 90(3):1327–1335

    Article  Google Scholar 

  • Verdú JR, Numa C, Hernández-Cuba O (2011) The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna—forest ecosystem. Ecol Indic 11(3):831–839

    Article  Google Scholar 

  • Vigiak O, Borselli L, Newham LTH, McInnes J, Roberts AM (2012) Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138(1):74–88

    Article  Google Scholar 

  • Volk M, Möller M, Wurbs D (2010) A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy 27(4):997–1009

    Article  Google Scholar 

  • Von Haaren C, Reich M (2006) The German way to greenways and habitat networks. Landsc Urban Plan 76:7–22

    Article  Google Scholar 

  • Welderufael WA, Woyessa YE, Edossa DC (2013) Impact of rainwater harvesting on water resources of the model river basin, central region of South Africa. Agric Water Manag 116:218–227

    Article  Google Scholar 

  • Witt A, Fürst C, Makeschin F (2013) Regionalization of climate change sensitive forest ecosystem types for potential afforestation areas. J Environ Manag 127:48–55

    Article  Google Scholar 

  • Wolf M, Pfennig B, Krause P, Flügel W-A (2009a) Delineation of topographic process entities using SRTM for hydrological modelling. 18th World IMACS/MODSIM Congress, Cairns, Australia. http://mssanz.org.au/modsim09

  • Wolf M, Pfennig B, Krause P, Flügel W-A (2009b) Landscape dependent derivation of J2000 model parameters for hydrological modelling in ungauged basins. New approaches to hydrological prediction in data sparse regions. IAHS Publications, p 333

    Google Scholar 

  • Yeh CT, Huang SL (2009) Investigating spatiotemporal patterns of landscape diversity in response to urbanization. Landsc Urban Plan 93:151–162

    Article  Google Scholar 

  • Zebisch M, Wechsung F, Kenneweg H (2004) Landscape response functions for biodiversity – assessing the impact of land-use changes at the county level. Landsc Urban Plan 67:157–172

    Article  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64(2):253–260

    Article  Google Scholar 

  • Zhou D, Lin Z, Liu L (2012) Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Sci Total Environ 439:260–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the organizers of this book and the anonymous reviewers for their helpful comments to improve our paper. Projects that formed the basis of our discussion paper were ENFORCHANGE (German Federal Ministry of Education and Research (BMBF) project No. 0330634K), REGKLAM (BMBF project No. 01LR0802B), RegioPower (German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) No. 22019911), and ILMS (BMBF project No 03IP514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Fürst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fürst, C., Flügel, WA. (2015). Assessing the Impact of Land-Use Changes on Providing Hydrological Ecosystem Functions (ESF) and Services (ESS) – A Case-Study Experience Based Conceptual Framework. In: Chicharo, L., Müller, F., Fohrer, N. (eds) Ecosystem Services and River Basin Ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9846-4_9

Download citation

Publish with us

Policies and ethics