Skip to main content

Wind Turbine and Propeller Aerodynamics—Analysis and Design

  • Chapter
  • First Online:
  • 5351 Accesses

Abstract

Wind turbines and propellers are very similar from the aerodynamics point of view, the former extracting energy from the wind, the latter putting energy into the fluid to create a thrust. The main part of this chapter will be devoted to wind turbine analysis and design, as this is currently a major area of research. But much of the theory and numerics is applicable to propellers. Section 10.9 will discuss some results pertinent to propellers. By convention, the power absorbed by a wind turbine rotor will be negative, whereas, that provided by the power plant of a propeller driven system will be positive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hand, M.M., Simms, D.A., Fingersh, L.J., Jager, D.W., Cotrell, J.R., Schreck, S., Larwood, S.M.: Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns, NREL/TP-500-29955 (2001)

    Google Scholar 

  2. Rankine, W.J.: Trans. Inst. Nav. Archit. 6, 13 (1865)

    Google Scholar 

  3. Froude, R.E.: Trans. Inst. Nav. Archit. 30, 390 (1889)

    Google Scholar 

  4. Betz, A.: Wind Energie und Ihre Ausnutzung durch Windmühlen. Göttingen, Vandenhoeck (1926)

    Google Scholar 

  5. Joukowski, N.E.: Travaux du Bureau des Calculs et Essais Aéronautiques de l’Ecole Supérieure Technique de Moscou (1918)

    Google Scholar 

  6. Prandtl, L., Betz, A.: Vier Abhandlungen zur Hydro- und Aero-dynamik, Selbstverlag des Kaiser Wilhelminstituts fur Strömungsforshung. Göttingen Nachr. Göttingen, Germany (1927)

    Google Scholar 

  7. Goldstein, S.: On the vortex theory of screw propellers. Proc. R. Soc. Lond. Ser. A 123, 440–465 (1929)

    Article  MATH  ADS  Google Scholar 

  8. Betz, A.: Schraubenpropeller mit geringstem Energieverlust, Nach der Kgl. Gesellschaft der Wiss. zu Göttingen, Math.-Phys. Klasse, pp. 193–217; reprinted in Vier Abhandlungen zur Hydro- und Aero-dynamik, by L. Prandtl and A. Betz, Göttingen, 1927 (reprint Ann Arbor: Edwards Bros. 1943), pp. 68–92 (1919)

    Google Scholar 

  9. Munk, M.M.: The Minimum Induced Drag of Aerofoils, NACA report. 121 (1921)

    Google Scholar 

  10. Chattot, J.-J.: Optimization of wind turbines using helicoidal vortex model. J. Sol. Energy Eng. Spec. Issue: Wind Energy 125(4), 418–424 (2003)

    Article  Google Scholar 

  11. Chattot, J.-J.: Computational Aerodynamics and Fluid Dynamics: An Introduction. Scientific Computation. Springer, Berlin (2004). ISBN 3-540-43494-1, Second Printing

    Google Scholar 

  12. Chattot, J.-J.: Analysis and design of wings and wing/winglet combinations at low speeds. Comput. Fluid Dyn. J., Spec. Issue, 13(3) (2004)

    Google Scholar 

  13. Drela, M.: XFOIL: an analysis and design system for low reynolds number airfoils. In: Mueller, T.J. (ed.) Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, vol. 54, pp. 1–12. Springer, Berlin (1989)

    Google Scholar 

  14. Chattot, J.-J.: Helicoidal vortex model for steady and unsteady flows. Comput. Fluids 35, 733–741 (2006)

    Article  MATH  Google Scholar 

  15. Coton, F.N., Wang, T., Galbraith, R.A. McD: An examination of key aerodynamics modeling issues raised by the NREL blind comparison. AIAA paper no. 0038 (2002)

    Google Scholar 

  16. Hallissy, J.M., Chattot, J.-J.: Validation of a helicoidal vortex model with the NREL unsteady aerodynamic experiment. Comput. Fluid Dyn. J. Spec. Issue 14(3), 236–245 (2005)

    Google Scholar 

  17. Schmitz, S., Chattot, J.-J.: Method for aerodynamic analysis of wind turbines at peak power. J. Propuls. Power 23(1), 243–246 (2007)

    Article  Google Scholar 

  18. Chattot, J.-J.: Effects of blade tip modifications on wind turbine performance using vortex model. Comput. Fluids 38(7), 1405–1410 (2008)

    Article  Google Scholar 

  19. Chattot, J.-J.: Helicoidal vortex model for wind turbine aeroelastic simulation. Comput. Struct. 85, 1072–1079 (2007)

    Article  Google Scholar 

  20. Chattot, J.-J.: Optimization of propellers using helicoidal vortex model. Comput. Fluid Dyn. J. 10(4), 429–438 (2002)

    ADS  Google Scholar 

  21. Chattot, J.-J.: Wind turbine aerodynamics: analysis and design. Int. J. Aerodyn. 1(3/4), 404–444 (2011). http://www.inderscience.com/jhome.php?jcode=ijad

Download references

Acknowledgments

One of the authors (JJC), acknowledges that part of the material in this chapter was originally published in the International Journal of Aerodynamics, Ref. [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Chattot .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chattot, J.J., Hafez, M.M. (2015). Wind Turbine and Propeller Aerodynamics—Analysis and Design. In: Theoretical and Applied Aerodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9825-9_10

Download citation

Publish with us

Policies and ethics