Skip to main content

Operational Approach to Modern Theory of Evolution

  • Chapter
  • First Online:
Quantum Adaptivity in Biology: From Genetics to Cognition

Abstract

In this chapter we discuss the possibility to apply the quantum formalism to model biological evolution, especially at the cellular level—genetic and epigenetic evolutions. We start with an extended historical introduction which can be useful for non-biologists, physicists, mathematicians, psychologists, sociologists. In particular, detailed comparative analysis of Darwinism and Lamarckism is presented. We discuss the process of elimination of the Lamarckian viewpoint from evolutionary biology and its sudden reappearance in theory of epigenetic evolution. One of the main messages of this chapter is that the ideology of quantum adaptive dynamics (and, in particular, of theory of open quantum systems) matches perfectly with both approaches (Darwinism and Lamarckism) and it can be used to unify them in a new general theory, theory of quantum adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remind that quantum-like (QL) states are information states representing probabilistic information about possible measurements on bio-systems, including self-measurements.

  2. 2.

    The famous sole illustration of the “Origin of Species” shows a Tree of Life (or more precisely, a series of trees presumably depicting the evolution of different divisions of organisms).

  3. 3.

    Here we follow the presentation from the work [13] of Vasily Ogryzko . He was one of the pioneers in attempts to use quantum physics to model cellular evolution.

  4. 4.

    He used a mutation that would enable the cells to grow on lactose, reverting a previously inactive \(\beta \)-galactosidase gene back to its wild type, Chap. 5.

References

  1. Lamarck, J.-B.: Philosophie Zoologique ou Exposition des Considerations Relatives à l’Histoire Naturelle des Animaux. Zoological Philosophy: Exposition with Regard to the Natural History of Animals. Dentu, Paris (1809)

    Google Scholar 

  2. Darwin, Ch.: The Variation of Animals and Plants Under Domestication. John Murray, London (1868)

    Google Scholar 

  3. Wallace, A.R.: Darwinism: An Exposition of the Theory of Natural Selection, With Some of Its Applications. Macmillan and Company, New York (1889)

    Google Scholar 

  4. Weismann, A.: Essays Upon Heredity, vols. 1, 2. Clarendon Press, Oxford (1889)

    Google Scholar 

  5. Futuyma, D.J.: Evolutionary Biology. Sinauer Associates, Sunderland (1986)

    Google Scholar 

  6. Wright, S.: The evolution of dominance. Am. Nat. 63(689), 556–561 (1929)

    Article  Google Scholar 

  7. Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930)

    Book  Google Scholar 

  8. Kimura, M.: Evolutionary rate at the molecular level. Nature 217(5129), 624–626 (1968)

    Article  CAS  PubMed  Google Scholar 

  9. Gillespie, J.H.: Genetic drift in an infinite population. The Pseudohitchhiking Model Genetics 155(2), 909–919 (2000)

    CAS  Google Scholar 

  10. Koonin, E.V., Wolf, Y.I.: Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front. Cell. Infect. Microbiol. 2, Article number 119 (2012)

    Google Scholar 

  11. Ryan, F.J.: Spontaneous mutation in non-dividing bacteria. Genetics 40(5), 726–38 (1955)

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Luria, S.E., Delbruck, M.: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6), 491–511 (1943)

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ogryzko, V.V.: On two quantum approaches to adaptive mutations in bacteria. arxiv:ftp/arxiv/papers/0805/0805.4316.pdf

  14. Cairns, J., Overbaugh, J., Miller, S.: The origin of mutants. Nature 335(6186), 142–145 (1988)

    Article  CAS  PubMed  Google Scholar 

  15. Foster, P.L.: Adaptive mutation: the uses of adversity. Annu. Rev. Microbiol. 47, 467–504 (1993)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Foster, P.L.: Adaptive mutation: implications for evolution. Bioessays 22(12), 1067–1074 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hall, B.G.: Is the occurrence of some spontaneous mutations directed by environmental challenges? New Biol. 3(8), 729–733 (1991)

    CAS  PubMed  Google Scholar 

  18. Hall, B.G.: Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 102–103(1–6), 109–125 (1998)

    Article  PubMed  Google Scholar 

  19. Kugelberg, E., Kofoid, E., Reams, A.B., Andersson, D.I., Roth, J.R.: Multiple pathways of selected gene amplification during adaptive mutation. Proc. Natl. Acad. Sci. USA 103(46), 17319–17324 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pettersson, M.E., Roth, J.R., Berg, O.G.: The amplification model for adaptive mutation: simulations and analysis. Genetics 169(2), 1105–1115 (2005)

    Article  PubMed Central  PubMed  Google Scholar 

  21. Roth, J.R., Kugelberg, E., Reams, A.B., Kofoid, E., Andersson, D.I.: Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol. 60, 477–501 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Stumpf, J.D., Poteete, A.R., Foster, P.L.: Amplification of lac cannot account for adaptive mutation to Lac+ in Escherichia coli. J. Bacteriol. 189(6), 2291–2299 (2007)

    Google Scholar 

  23. Galton, F.: Discontinuity in evolution. Mind (n.s.) 3, 362–372 (1894)

    Article  Google Scholar 

  24. Gillham, N.W.: A Life of Sir Francis Galton. Oxford University Press, Oxford (2001)

    Google Scholar 

  25. Gillham, N.W.: Evolution by jumps: Francis Galton and William Bateson and the Mechanism of evolutionary change. Genetics 159, 1383–1392 (2001)

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Bateson, W.: Materials for the Study of Variation Treated With Especial Regard to Discontinuity in the Origin of Species. Macmillan, London (1894)

    Book  Google Scholar 

  27. Gould, S.J., Eldredge, N.: Punctuated equilibrium comes of age. Nature 366, 223–227 (1993)

    Article  CAS  PubMed  Google Scholar 

  28. Russell, P.J.: iGenetics. Pearson Benjamin Cummings, San Francisco (2002)

    Google Scholar 

  29. Jablonka, E., Raz, G.: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanari Asano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I. (2015). Operational Approach to Modern Theory of Evolution. In: Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9819-8_7

Download citation

Publish with us

Policies and ethics