Skip to main content

Long-Term Change Dynamics Using Landsat Archive for the Region of Waterloo in Ontario, Canada

  • Chapter
Monitoring and Modeling of Global Changes: A Geomatics Perspective

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Urban land use and land cover classification have always been crucial due to the ability and to link many elements of human and physical environments. Timely, accurate, and detailed knowledge of the urban land cover information derived from remote sensing data is increasingly required among a wide variety of communities. This chapter presents a surge of interest that has predominately driven from the recent innovations in data, theories in urban remote sensing, and technologies. The Region of Waterloo was chosen for land use and land cover classification by applying remote sensing techniques to satellite images from 1984 to 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Kawy OR, Rød JK, Ismail HA, Suliman AS (2011) Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl Geogr 31(2):483–494

    Article  Google Scholar 

  • Afify HA (2011) Evaluation of change detection techniques for monitoring land-cover changes: a case study in new Burg El-Arab area. Alex Eng J 50(2):187–195

    Article  Google Scholar 

  • Alphan H (2011) Comparing the utility of image algebra operations for characterizing landscape changes: the case of the Mediterranean coast. J Environ Manage 92(11):2961–2971

    Article  Google Scholar 

  • Alumutairi A, Warner TA (2010) Change detection accuracy and image properties: a study using simulated data. Remote Sens 2:1508–1529

    Article  Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. United States Government Printing Office, Washington

    Google Scholar 

  • Benediktsson JA, Chanussot J, Fauvel M (2007) Multiple classifier systems in remote sensing: from basics to recent developments. MCS 2007. LNCS 4472:501–512

    Google Scholar 

  • Bhatta B (2010) Analysis of urban growth and sprawl from remote sensing data, Elsevier

    Google Scholar 

  • Byrne GF, Crapper PF, Mayo KK (1980) Monitoring land-cover change by principal component analysis of multitemporallandsat data. Remote Sens Environ 10(3):175–184

    Article  Google Scholar 

  • Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 46:35–46

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC Press, New York. ISBN 0-87371-986-7

    Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25(9):1565–1596

    Article  Google Scholar 

  • Dawelbait M, Morari F (2012) Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J Arid Environ 80:45–55

    Article  Google Scholar 

  • Deng JS, Wang K, Li J, Deng YH (2009) Urban land use change detection using multisensor satellite images. Pedosphere 19(1):96–103

    Article  Google Scholar 

  • Frohn R, Arellano-Neri O (2005) Improving artificial neural networks using texture analysis and decision trees for the classification of land cover. GISci Remote Sens 42(1):44–65

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300

    Article  Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74

    Article  Google Scholar 

  • Hayes DJ, Sader SA (2001) Comparison of change detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogramm Eng Remote Sens 67(9):1067–1075

    Google Scholar 

  • Huang C, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749

    Article  Google Scholar 

  • Huang Y, Fipps G, Lacey RE, Thomson SJ (2011) Landsat satellite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of Lower Rio Grande Valley of Texas. Appl Remote Sens J 2(1):27–36

    Google Scholar 

  • IRS (2013) ITC’s database of satellites and sensors, Faculty of geo-information science and earth observation (ITC). University of Twente. Retrieved from: http://www.itc.nl/research/products/sensordb/AllSatellites.aspx

  • Jensen JR (2005) Introductory of digital image processing: a remote sensing perspective, 3rd edn. Pearson Education, Hardcover, USA, ISBN 0-13-145361-0

    Google Scholar 

  • Jensen JR (2006) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson Education, Hardcover, USA, ISBN 0-13-188950-8

    Google Scholar 

  • Jha CS, Unni NVM (1994) Digital change detection of forest conversion of a dry tropical Indian forest region. Int J Remote Sens 15(13):2543–2552

    Article  Google Scholar 

  • Kaufmann RK, Seto KC (2001) Change detection, accuracy, and bias in a sequential analysis of Landsat imagery in the Pearl River Delta, China: econometric techniques. Agr Ecosyst Environ 85(1–3):95–105

    Article  Google Scholar 

  • Kleynhans W, Olivier JC, Wessels KJ, Salmon BP, van den Bergh F, Steenkamp K (2011) Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data. IEEE Geosci Remote Sens Lett 8(3):507–511

    Article  Google Scholar 

  • Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

    Google Scholar 

  • Lu D, Weng Q (2004) Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm Eng Remote Sens 70(9):1053–1062

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Lunetta RS, Elvidge CD (1998) Remote sensing change detection: environmental monitoring methods and applications. Sleeping Bear Press, Ann Arbor. ISBN 1-57504-037-9

    Google Scholar 

  • Lunetta RS, Johnson DM, Lyon JG, Crotwell J (2004) Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens Environ 89:444–454

    Article  Google Scholar 

  • Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64(3):207–216

    Google Scholar 

  • Manavalan P, Kesavasamy K, Adiga S (1995) Irrigated crops monitoring through seasons using digital change detection analysis of IRS-LISS 2 data. Int J Remote Sens 16(4):633–640

    Article  Google Scholar 

  • Mellor A, Haywood A, Stone C, Jones S (2013) The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens 5(6):2838–2856

    Article  Google Scholar 

  • Nemmour H, Chibani Y (2011) Support vector machines for automatic multi-class change detection in Algerian Capital using landsat TM imagery. J Indian Soc Remote Sens 38(4):585–591

    Article  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26(5):1007–1011

    Article  Google Scholar 

  • Parra GA, Mouchot MC, Roux C (1996) A multitemporal land-cover change analysis tool using change vector and principal components analysis. IEEE 0-7803-3068-4/96, pp 1753–1755

    Google Scholar 

  • Patino JE, Duque JC (2013) A review of regional science applications of satellite remote sensing in urban settings. Comput Environ Urban Syst 37:1–17

    Article  Google Scholar 

  • Peiman R (2011) Pre-classification and post-classification change-detection techniques to monitor land-cover and land-use change using multi-temporal Landsat imagery: a case study on Pisa Province in Italy. Int J Remote Sens 32(15):4365–4381

    Article  Google Scholar 

  • Prakash A, Gupta RP (1998) Land-use mapping and change detection in a coal mining area ─ a case study in the Jharia coalfield, India. Int J Remote Sens 19(3):391–410

    Article  Google Scholar 

  • Region of Waterloo (2006a) Regional Growth Management Strategy (RGMS). Retrieved from: http://www.regionofwaterloo.ca/en/aboutTheEnvironment/resources/RegionalGrowthManagement.pdf

  • Region of Waterloo (2006b) Regional Growth Management Strategy (RGMS) highlights brochure. Retrieved from: Region of Waterloo (2006) Regional Growth Management Strategy (RGMS) highlights brochure. Retrieved from: http://www.regionofwaterloo.ca/en/aboutTheEnvironment/resources/FINALRGMSBrochure2006.pdf

  • Region of Waterloo (2010) Regional Official Plan (ROP). Retrieved from: http://www.regionofwaterloo.ca/en/regionalGovernment/PreviousROP.asp

  • Ridd MK, Hipple JD (2006) Remote sensing of human settlements: manual of remote sensing, 3rd edn. American Society for Photogrammetry and Remote Sensing. ISBN 1-57083-077-0

    Google Scholar 

  • Sexton JO, Urban DL, Donohue MJ, Song C (2013a) Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens Environ 128:246–258

    Article  Google Scholar 

  • Sexton JO, Song X, Huang C, Channan S (2013b) Urban growth of the Washington, D.C.-Baltimore, MD metropolitan region from 1984 to 2010 by annual, landsat-based estimates of impervious cover. Remote Sens Environ 129:42–53

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Sleeter BM, Wilson TS, Acevedo W (2012) Status and trends of land change in the Western United States – 1973 to 2000: USGS professional paper 1794–A, 324 p. Retrieved from: http://pubs.usgs.gov/pp/1794/a/

  • Song X, Duan Z, Jiang X (2012) Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image. Int J Remote Sens 33(10):3301–3320

    Article  Google Scholar 

  • Statistics Canada (2011) Focus on geography series, 2011 census. Retrieved from: http://www12.statcan.gc.ca/census-recensement/2011/as-sa/fogs-spg/Facts-pr-eng.cfm?Lang=Eng&GK=PR&GC=35

  • Sundarakumar K, Harika M, Begum SKA, Yamini S, Balakrishna K (2012) Land use and land cover change detection and urban sprawl analysis of Vijayamada city using multitemporal Landsat data. Int J Eng Sci Technol 4(01):170–178

    Google Scholar 

  • Tan KC, Lim HS, MatJafri MZ, Abdullah K (2009) Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ Earth Sci 60(7):1509–1521

    Article  Google Scholar 

  • Tang J, Wang L, Yao Z (2008) Analyses of urban landscape dynamics using multi-temporal satellite images: a comparison of two petroleum-oriented cities. Landsc Urban Plan 87(4):269–278

    Article  Google Scholar 

  • Thapa RB, Murayama Y (2009) Urban mapping, accuracy, & image classification: a comparison of multiple approaches in Tsukuba City, Japan. Appl Geogr 29(1):135–144

    Article  Google Scholar 

  • Thompson SK (1992) Sampling. Wiley, New York. ISBN 0-471-54045-5

    Google Scholar 

  • Tian G, Jiang J, Yang Z, Zhang Y (2011) The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol Model 222(3):865–878

    Article  Google Scholar 

  • USGS (2013a) Landsat 8. Fact sheet 2013–3060. Retrieved from: http://pubs.er.usgs.gov/publication/fs20133060

  • USGS (2013b) Landsat-A global land-imaging mission. Fact sheet 2012-3072. Retrieved from: http://pubs.usgs.gov/fs/2012/3072/fs2012-3072.pdf

  • USGS (2013c) Landsat 8. Retrieved from: http://landsat.usgs.gov/landsat8.php

  • USGS (2013d) Landsat project statistics. Retrieved from: http://landsat.usgs.gov/Landsat_Project_Statistics.php

  • USGS (2013e) Landsat project description. Retrieved from: http://landsat.usgs.gov/about_project_descriptions.php

  • USGS (2013f) Landsat processing details. Retrieved from: http://landsat.usgs.gov/Landsat_Processing_Details.php

  • Wulder MA, White JC, Masek JG, Dwyer J, Roy DP (2011) Continuity of Landsat observations: short term considerations. Remote Sens Environ 115:747–751

    Article  Google Scholar 

  • Yang X (2002) Satellite monitoring of urban spatial growth in the Atlanta Metropolitan area. Photogramm Eng Remote Sens 68(7):725–734

    Google Scholar 

  • Yang L, Xian G, Klaver JM, Deal B (2003) Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogramm Eng Remote Sens 69(9):1003–1010

    Article  Google Scholar 

  • Yin J, Yin Z, Zhong H, Xu S, Hu X, Wang J, Wu J (2011) Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979─2009) in China. Environ Monit Assess 177(1–4):609–621

    Article  Google Scholar 

  • Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98(2–3):317–328

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  • Zhao H, Chen X, Area AS (2005) Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. IEEE Trans Geosci Remote Sens 4(5):1666–1668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, A., Li, J., Pirasteh, S. (2015). Long-Term Change Dynamics Using Landsat Archive for the Region of Waterloo in Ontario, Canada. In: Li, J., Yang, X. (eds) Monitoring and Modeling of Global Changes: A Geomatics Perspective. Springer Remote Sensing/Photogrammetry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9813-6_4

Download citation

Publish with us

Policies and ethics