Skip to main content

Survey on Simulation Methods in Multi-axis Machining

  • Conference paper
Book cover Transactions on Engineering Technologies

Abstract

In industry, the evolution of productivity and quality of mechanical manufacture of complex shape parts (mold, automobile, form…) is marked by the development of several machining simulation techniques for modeling and predicting the manufacturing process to represent the most realistic cut phenomenon. There exist several machining simulation techniques and touch various levels. Thus, this chapter summarizes the literature review and presents the techniques in a simplified scheme for the rapid exploration in this area, and in order to direct the reader to select an appropriate approach linked to a geometric or physical problem at a given scales in Part-Tool-Machine system. Particular attention is given to geometric simulation methods of the macroscopic scale; completed by brief comparison between models of workpiece representation for material removal process (Dexel, Voxel, Triple-Dexel).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouhadja, K., Bey, M.: Classification of simulation methods in machining on multi-axis machines. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2014, pp. 992–997. WCE, London, 2–4 July 2014

    Google Scholar 

  2. Zhang, Y., Xu, X., Liu, Y.: Numerical control machining simulation: a comprehensive survey. Int. J. Comput. Integr. Manuf. 24(7), 593–609 (2011)

    Article  Google Scholar 

  3. Kalay, F.: Simulation numérique de l’usinage-Application à l’aluminium AU4G (A2024-T351). Technique De L’ingénieur, l’expertise technique de référence, bm7002-2 (2010)

    Google Scholar 

  4. Lee, S.W., Nestler, A.: Virtual workpiece: workpiece representation for material removal process. Manuf. Technol. 58, 443–463 (2012)

    Article  Google Scholar 

  5. Aras, E., Feng, H.-Y.: Vector model-based workpiece update in multi-axis milling by moving surface of revolution. Manuf. Technol. 52(913–927), 2011 (2011)

    Google Scholar 

  6. Lee, S.W., Nestler, A.: Complete swept volume generation, part I: swept volume of a piecewise C1-continuous cutter at five-axis milling via Gauss map. Comput. Aided Des. 43, 427–441 (2011)

    Article  Google Scholar 

  7. Lee, S.W., Nestler, A.: Complete swept volume generation – part II: NC simulation of self-penetration via comprehensive analysis of envelope profiles. Comput. Aided Des. 43, 442–456 (2011)

    Article  Google Scholar 

  8. Mann, S., Bedi, S., Israeli, G., Zhou, X.: Machine models and tool motions for simulating five-axis machining. Comput. Aided Des. 42, 231–237 (2010)

    Article  Google Scholar 

  9. Ibarakia, S., Sawadaa, M., Matsubaraa, A., Matsushitab, T.: Machining tests to identify kinematic errors on five-axis machine tools. Precis. Eng. 34, 387–398 (2010)

    Article  Google Scholar 

  10. Kong, L.B., Cheung, C.F.: Prediction of surface generation in ultra-precision raster milling of optical freeform surfaces using an integrated kinematics error model. Adv. Eng. Softw. 45, 124–136 (2012)

    Article  Google Scholar 

  11. Hong, C., Ibaraki, S., Matsubara, A.: Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools. Precis. Eng. 35, 1–11 (2011)

    Article  Google Scholar 

  12. Karunakaran, K.P., Shringi, R., Ramamurthi, D., Hariharan, C.: Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model. Manuf. Technol. 46, 465–490 (2010)

    Article  Google Scholar 

  13. Ahmad, R., Tichadou, S., Hascoet, J.Y.: 3D safe and intelligent trajectory generation for multi-axis machine tools using machine vision. Int. J. Comput. Integr. Manuf. 26(4), 365–385 (2013)

    Article  Google Scholar 

  14. Assouline, S.C.: Simulation numérique de l’usinage à l’échelle macroscopique: prise en compte d’une pièce déformable. Thèse doctorat, Ecole Nationale Supérieure d’Arts et Métiers – CER de Paris (2005)

    Google Scholar 

  15. Montgomery, D., Altintas, Y.: Mechanism of cutting force and surface generation in dynamic milling. ASME Trans. J. Eng. Ind. 113, 160–168 (1991)

    Article  Google Scholar 

  16. Mizugaki, Y., Hao, M., Kikkawa, K.: Geometric generating mechanism of machined surface by ball-nosed end milling. Ann. CIRP 50, 69–72 (2001)

    Article  Google Scholar 

  17. Marty, A.: Simulation numérique de l’usinage par outil coupant à l’échelle Macroscopique: contribution à la définition géométrique de la surface usinée. PhD thesis, Ecole Nationale Supérieure d’Arts et Métiers – CER de Paris (2003)

    Google Scholar 

  18. Ratchev, S., Liu, S., Huang, W., Becker, A.A.: Milling error prediction and compensation in machining of low-rigidity parts. Int. J. Mach. Tool Manuf. 44, 1629–1641 (2004)

    Article  Google Scholar 

  19. Hook, T.V.: Real-time shaded NC milling display. SIGGRAPH’86 20, 15–35 (1986)

    Article  Google Scholar 

  20. Weinert, K., Zabel, A.: Simulation based tool wear prediction in milling of sculptured surfaces. Ann. CIRP 53, 217–223 (2004)

    Google Scholar 

  21. DeVor, R.E., Kline, W.A., Zdeblick, W.J.: A mechanistic model for the force system in end milling with application to machining airframe. In: 8th North American Manufacturing Research Conference, pp. 297–303 Dearborn, USA, (1980)

    Google Scholar 

  22. Voelcker, H.B, Hunt, W.A.: The role of solid modeling in machining process modeling and NC verification. SAE Technical Paper 810195 (1981)

    Google Scholar 

  23. Jerard, R.B., Drysdale, R.L., Hauck, K.E., Schaudt, B., Magewick, J.: Methods for detecting errors in numerically controlled machining of sculptured surfaces. IEEE Comput. Gr. Appl. 9(1), 26–39 (1989)

    Article  Google Scholar 

  24. Karunakaran, K.P., Shringi, R.: A solid modelbased off-line adaptive controller for feed rate scheduling for milling process. J. Mater. Process. Technol. 204(1–3), 384–396 (2008)

    Article  Google Scholar 

  25. Anderson, R.O.: Detecting and eliminating collision in NC machining. Comput. Aided Des. 10(4), 231–237 (1978)

    Article  Google Scholar 

  26. Hsu, P.L., Yang, W.T.: Real-time 3D simulation of 3-axis milling using isometric projection. Comput. Aided Des. 25(4), 215–224 (1993)

    Article  Google Scholar 

  27. Lee, S.K., Ko, S.L.: Development of simulation system for machining process using enhanced Z-map model. J. Mater. Process. Technol. 130–131, 608–617 (2002)

    Article  Google Scholar 

  28. Kang, M.J., Lee, S.K., Ko, S.L.: Optimization of cutting conditions using enhanced z map model. CIRP Ann. Manuf. Technol. 51(1), 429–432 (2002)

    Article  Google Scholar 

  29. Lee, S.H., Lee, K.S.: Local mesh decimation for view-Independent three-axis NC milling simulation. Int. J. Adv. Manuf. Technol. 19(8), 579–586 (2002)

    Article  Google Scholar 

  30. Yun, W.S., Ko, J.H., Lee, H.U., Cho, D.W., Ehmann, K.F.: Development of a virtual machining system, part 3: cutting process simulation in transient cuts. Int. J. Mach. Tool Manuf. 42(15), 1617–1626 (2002)

    Article  Google Scholar 

  31. Karunakaran, K.P., Shringi, R.: Octree-to-BRep conversion for volumetric NC simulation. Int. J. Adv. Manuf. Technol. 32(1–2), 116–131 (2007)

    Article  Google Scholar 

  32. Ling, H.J., et al.: Method of determining integration limit for cutting force model of flat end milling process. J. Tool Technol. 38(4), 11–13 (2004)

    Google Scholar 

  33. Li, J.G., Yao, Y.X., Xia, P.J., Liu, C.Q., Wu, C.G.: Extended Octree for cutting force prediction. Int. J. Adv. Manuf. Technol. 39(9–10), 866–873 (2008)

    Article  Google Scholar 

  34. Kawashima, Y., Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S.: A flexible quantitative method for NC machining verification using a space-division based solid model. Vis. Comput. 7(2–3), 149–157 (1991)

    Article  Google Scholar 

  35. Kim, Y.H., Ko, S.L.: Development of a machining simulation system using the Octree algorithm. Lect. Notes Comput. Sci. 3482(III), 1089–1098 (2005)

    Article  Google Scholar 

  36. Kim, Y.H., Ko, S.L.: Improvement of cutting simulation using the Octree method. Int. J. Adv. Manuf. Technol. 28(11–12), 1152–1160 (2008)

    Google Scholar 

  37. Fussell, B.K., Jerard, R.B., Hemmett, J.G.: Robust feedrate selection for 3-axis NC machining using discrete models. J. Manuf. Sci. Eng. 123(2), 214–224 (2001)

    Article  Google Scholar 

  38. Fussell, B.K., Jerard, R.B., Hemmett, J.G.: Modeling of cutting geometry and forces for 5-axis sculptured surface machining. Comput. Aided Des. 35(4), 333–346 (2003)

    Article  Google Scholar 

  39. Peng, X., Zhang, W.: A virtual sculpting system based on triple Dexel models with haptics. Comput. Aided Des. Appl. 01/2009 6(5), 645–659 (2009). doi:10.3722/cadaps

    Google Scholar 

  40. Zhang, W.: Virtual Prototyping with Surface Reconstruction and Freeform Geometric Modeling Using Level-Set Method. Missouri University of Science and Technology, pp. 98–99 (2008)

    Google Scholar 

  41. Zhang, W., Leu, M.C.: Surface reconstruction using Dexel data from three sets of orthogonal rays. Faculty Research & Creative Works. Paper 3678. http://mst.bepress.com/faculty_work/367 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadidja Bouhadja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bouhadja, K., Bey, M. (2015). Survey on Simulation Methods in Multi-axis Machining. In: Yang, GC., Ao, SI., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9804-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9804-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9803-7

  • Online ISBN: 978-94-017-9804-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics