Advertisement

De Rham Cohomology in Constrained Physical System

Chapter
  • 608 Downloads

In this chapter, we exploit ’t Hooft-Polyakov monopole to construct closed algebra of quantum field operators and BRST charge Q. In a first class configuration of Dirac quantization, by including Q-exact gauge fixing term and Faddeev-Popov ghost term, we find the BRST invariant Hamiltonian to investigate de Rham cohomology group structure for the monopole system. Bogomol’nyi bound is also discussed in terms of the first class topological charge defined on the extended internal two-sphere [134].

Keywords

Poisson Bracket Class Constraint Ghost Number BRST Operator BRST Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 14.
    P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964)Google Scholar
  2. 15.
    I.A. Batalin, E.S. Fradkin, Phys. Lett. B 180, 157 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 22.
    A.J. Niemi, Phys. Lett. B 213, 41 (1988)CrossRefADSMathSciNetGoogle Scholar
  4. 23.
    T. Fujiwara, Y. Igarashi, J. Kubo, Nucl. Phys. B 341, 695 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 26.
    Y.W. Kim, S.K. Kim, W.T. Kim, Y.J. Park, K.Y. Kim, Y. Kim, Phys. Rev. D 46, 4574 (1992)CrossRefADSMathSciNetGoogle Scholar
  6. 51.
    S.T. Hong, Y.J. Park, K. Kubodera, F. Myhrer, Mod. Phys. Lett. A 16, 1361 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 58.
    S.T. Hong, Y.J. Park, Phys. Rep. 358, 143 (2002)CrossRefADSzbMATHGoogle Scholar
  8. 79.
    E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 82.
    S. Hamamoto, Prog. Theor. Phys. 95, 441 (1996)CrossRefADSMathSciNetGoogle Scholar
  10. 132.
    G. ’t Hooft, Nucl. Phys. B 79, 276 (1974)Google Scholar
  11. 133.
    A.M. Polyakov, JETP Lett. 20, 194 (1974)ADSGoogle Scholar
  12. 134.
    S.T. Hong, Mod. Phys. Lett. A 25, 2529 (2010)CrossRefADSzbMATHGoogle Scholar
  13. 279.
    J.J. Rotman, An Introduction to Algebraic Topology (Springer, Heidelberg, 1988)CrossRefzbMATHGoogle Scholar
  14. 281.
    T. Frankel, The Geometry of Physics (Cambridge University Press, Cambridge, 1997)zbMATHGoogle Scholar
  15. 282.
    R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1984)Google Scholar
  16. 283.
    P.A.M. Dirac, Proc. R. Soc. A 133, 60 (1931)CrossRefADSGoogle Scholar
  17. 284.
    T.T. Wu, C.N. Yang, Phys. Rev. D 14, 437 (1976)CrossRefADSGoogle Scholar
  18. 285.
    S.T. Hong, J. Lee, T.H. Lee, P. Oh, Phys. Rev. D 72, 015002 (2005)CrossRefADSGoogle Scholar
  19. 288.
    S.T. Hong, J. Lee, T.H. Lee, P. Oh, Mod. Phys. Lett. A 22, 1481 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 289.
    B. Grossman, Phys. Lett. B 152, 93 (1985)CrossRefADSMathSciNetGoogle Scholar
  21. 290.
    L. Baulieu, B. Grossman, R. Stora, Phys. Lett. B 180, 95 (1986)CrossRefADSMathSciNetGoogle Scholar
  22. 291.
    J. Arafune, P.G.O. Freund, C.J. Goebel, J. Math. Phys. 16, 433 (1975)CrossRefADSMathSciNetGoogle Scholar
  23. 292.
    L.D. Faddeev, V.N. Popov, Phys. Lett. B 25, 29 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Science EducationEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations